DRUG CALCULATION QUESTIONS

The following calculation questions have been drawn from various sources.
They are not indicative of the standard applied in the RPSGB pre-registration exam

DRUG CALCULATIONS

Drug calculation questions are a major concern for most pre-registration pharmacists and are also a worry for those involved in pre-registration training. When it is obvious that people are struggling with what are basic calculations, as part of a test exam or at their workdesk, one would be right to question their ability to accurately calculate doses in critical situations or environments such as on the Ward.
The vast majority of necessary calculations are likely to be relatively straightforward and it is infrequent that one needs to use any complicated formulas. However on those rare occasions when such formulae are required e.g. loading and maintenance doses of Gentamicin or Vancomycin, there are usually electronic aids available to reduce the possibility of calculation errors. It is vital however that any person performing calculations using some automatic process can understand and explain how the final dose is actually arrived at through the calculation..

So why is maths seen as being difficult? That's a difficult question and is posed in the negative but probably relates to the use of single letters rather than words as symbols

How can we make maths easy? That is simpler and is more positive. One easy way for those who find it difficult is to change formulas into sentences or to read formulas out aloud.

For Pharmacy Staff - Know your units and remember some simple ratios. One of the most useful is $1 \% \mathrm{w} / \mathrm{v}$ is equivalent to 10 mg in 1 ml . It is then easy to calculate that $0.5 \mathrm{mg} / \mathrm{ml}$ is $0.05 \% \mathrm{~W} / \mathrm{v}$ and $34.562 \mathrm{mg} / 1 \mathrm{ml}$ is 3.4562\%

Maths is just another language that tells us how we measure and estimate and these are the two key words. When you look at a calculation question do two things :-

1) Estimate the range and units the answer will be in, before starting to calculate, in your head. This will often give you clues as to which answer is correct in multiple choice questions and may eliminate several answers that will then be obviously wrong e.g. a dose of 60 gms of an antibiotic is probably wrong, 6 gms might be right, 6 mg is almost certainly wrong - except maybe for children / neonates
A dilution of an ointment will usually be w/w but may also be v/w
2) Eliminate the unnecessary 'values' or 'numbers'
e.g. a 60 kg woman requires a 25% dilution of Betnovate ointment to be applied to her lower limbs twice a day. What weight of White soft paraffin is required to supply 500 gms .
This is a simple calculation - its 75% of 500 gms or 375 gms . The rest is Betnovate Note that just for this you do not need to know the strength of Betnovate and the woman's weight is irrelevant.

Many of the RPSGB questions are this simple. However there has been a growing tendency to make them more difficult as pre-reg and pharmacists problems with calculations have been recognised as a major concern.

Finally - don't try and be too clever and don't try and be too simple. Some questions in the RPSGB are simple calculations. Others may need the use of additional knowledge of some kind unrelated to the pure calculation. Asking the equivalence between solid doses and liquid doses may need you to check which salt is being used and to then calculate X gms base $=\mathrm{Y}$ gms salt from info in the BNF (Phenytoin is a common example)

This Booklet is not designed to train you in undertaking Pharmaceutical calculations per se but to assist with calculation questions such as are found in the RPSGB exam and elsewhere and also hopefully the application of the language of maths to everyday situations.. With many of the questions provided here, you should be able to substitute alternative values or to re-arrange the formulas used and create additional test calculations of your own. Except where posed as multiple choice questions, there is no set time limit to questions. Some questions may be easily answered in seconds, others may take several minutes and calculations to arrive at a final set of answers. For multiple choice questions, the RPSGB allow 1.7 minutes per question (1 min 42 seconds) for open book qustions and 1.2 minutes (1 min 12 seconds) for closed book questions

Chapter 1

These questions involve simple calculations or slightly more complex calculations based around items relating to pharmacy. However like all calculations they are designed to test your ability to recognise the relationships between numbers and how to manipulate them. For the more adventurous (or in fact for those who find them difficult), try substituting algebraic values and producing simple formulae for these questions. While this could be done for each question, the equations for each question would be of little individual value for memorising to use elsewhere as they are not universal (See appendix) . Deriving them yourself would be useful as you will learn a little about the language of and use of maths..

1) Potassium Citrate Mixture BPC contains 30% Potassium Citrate w/v and 1% Quillaia Tincture. v / v What quantity of each would be required to manufacture 750 mls Potassium Citrate Mixture BPC.
2) Digitoxin injection contains 0.2 mg of active ingredient in each 1 ml . Express this as a percentage.
3) You are required to dispense 200 gms of 0.25% Betamethasone cream. You only have a 2% Cream. The diluent to use is Aqueous Cream. What quantity of each will be required.
4) You are on the ward in a difficult situation. A Patient requires 750mls of 10% Glucose to be administered immediately. The ward only has bags containing Glucose 50% and Glucose 5%. You are able to remove fluid and add fluid aseptically easily in these bags but cannot wait until a 10% solution is delivered. What quantities of each would you need to use to produce 750 mls of 10% Glucose.
5) You are required to produce a Copper Sulphate solution containing 600 ppm of Copper Sulphate. You have Copper Sulphate Crystals that are 97.5% pure (The impurities are not important.) The molecular weight of Copper Sulphate (is CuSO 4) 159.7 and the molecular weight of Copper Sulphate Crystals (CuSO4, 5H2O) is 249.7 (Assume these values are correct). What quantity of crystals are required to produce 1.5 Litres.
6) Some Quickies :-

Calculate the strengths as a percentage of the following solutions :-
a) When diluted 1 in 50 produces a 1 in 10,000 solution
b) When diluted 1 in 40 gives a solution containing 15 mg in each 1 ml
c) Contains 1 part per 10,000 of a drug with a molecular weight of 350
7) Some Quickies 2

Calculate the weights or volumes for 300 gms or mls of the following
a) $\quad 12 \% \mathrm{w} / \mathrm{v}$
b) $\quad 3.2 \% \mathrm{v} / \mathrm{v}$
c) $\quad 5.5 \% \mathrm{v} / \mathrm{w}$
d) $\quad 7.8 \% \mathrm{w} / \mathrm{w}$
8) Calculate the quantities required for the following TPN preparation :-

	Required :-	Quantity to be used :-
Ingredient A	$50 \mathrm{mg} / 100 \mathrm{mls}$	
Ingredient B	$0.25 \% \mathrm{w} / \mathrm{v}$	
Ingredient C	$100 \mathrm{gms} / \mathrm{Litre}$	
Ingredient D	$1 \mathrm{ppm} \mathrm{w} / \mathrm{v}$	
ingredient E	$3.2 \% \mathrm{v} / \mathrm{v}$	
ingredient F	60 gm	
Ingredient G	$700 \mathrm{KCals}(50 \mathrm{kCals} / \mathrm{gm})$	

Total Volume of TPN required $=\quad 3,500 \mathrm{mls}$
9) You are required to manufacture some Methylene Blue Suppositories. Each suppository is to contain 25 micrograms of Methylene Blue. You are to manufacture 20 Suppositories. Your balances (for weighing) are only accurate down to 100 mcg . The suppositories will also contain 50% WS paraffin and the remainder of the Suppositories will be Cocoa Butter. The suppositories will weigh 5 gms each. Allowing for an excess of 5% total mass, calculate the ingredients required and indicate the process you would use..
10) The molecular weight of Sodium Bicarbonate is 84.01 . Calculate the strength of Sodium Bicarbonate Solution that would contain 5 mmols per litre as a percentage expressed to three significant figures.
11) Calculate the weight in milligrams that would be required to make 3 litres of a a 25 mmol / Litre solution of the following given their molecular weights :-

Calcium Gluconate	MW $=448.4$
Calcium Lactate	MW $=308.3$
Magnesium Chloride	MW $=203.3$
Magnesium Sulphate	MW $=246.3$
Potassium Chloride	MW $=74.55$
Sodium Chloride	MW $=58.44$

12) Express the answers to Q 11 as a percentage.
13) How many mmols of Sodium and Chloride are there in 0.9% Sodium Chloride for Injection, given that the MW $=58.44$. Express your answer as mmol / Litre
14) How many mmols each are there of Sodium and Bicarbonate in 8.4% Sodium Bicarbonate in a 10 ml minijet. The molecular weight of Sodium Bicarbonate is 84.1
15) The MW of Magnesium Sulphate is 246.3. Magnesium Sulphate Injection is normally supplied as a 50% solution. How many mEq of Magnesium per ml does this contain. Normal blood levels of Magnesium (Mg++) are $2.5 \mathrm{mEq} /$ Litre. How many mg of Magnesium Sulphate does this equate to per Litre (assuming it is present as sulphate).
16) Using only the Chlorides of Potassium, Sodium and Ammonia, you are asked to make a 5 Litre solution containing the following :-

	Potassium	$1.7 \mathrm{mEq} / 100 \mathrm{ml}$
	Sodium	$6.3 \mathrm{mEq} / 100 \mathrm{ml}$
Chloride	$15 \mathrm{mEq} / 100 \mathrm{ml}$	
(MW	$\mathrm{NaCl}=58.44$	$\mathrm{KCl}=74.5 \quad \mathrm{NH} 3 \mathrm{Cl}=53.5)$

Calculate the weight of each Chloride in the 5 Litre solution What will be the mEq of ammonium ions in the final solution?
17) You have been asked to make 100 suppositories each weighing 2 gms .

The suppositories are each to contain 200mg Active Ingredient
The displacement value of The Active Ingredient is 2.5
Calculate the weight of Active Ingredient in the 100 suppositories and the total quantity of Suppository Base to be used.
18) Approximately how many millimols of Sodium are there in a 500 ml infusion of Sodium Bicarbonate 1.26% (Relative weights of the Ions $\mathrm{Na}=23$ Bicarbonate $=61$)

Section 2 - Quick Questions

19) What quantity of solid is required to make 450 mls of a $7.5 \% \mathrm{w} / \mathrm{v}$ Solution
20) What quantity of ingredient is required to make 650 mls of a 1 in $15 \mathrm{w} / \mathrm{v}$ solution
21) What volume of a liquid preparation containing 250 micrograms in 1 ml is equivalent to a 40mg Capsule
22) What daily dose of a drug is required for a 23 Kg teenager if the recommended dose is $7.5 \mathrm{mg} / \mathrm{kg} / \mathrm{QDS}$
23) How much of Drug A is there in 100 mls if, when diluted 1 in 800 there are 50 micrograms per ml in the final solution
24) Express the following quantities as a percentage of 100 gms

i)	12 gms
ii)	240 mg
iii)	750 micrograms
iv)	27.5 mls
v)	0.01 Litres
vi)	$1,000 \mathrm{mg}$

25) What quantity of Chlorhexidine is required to make 350 mls of solution such that when diluted 100 times, the final solution contains 0.004% Chlorhexidine?
26) What is 40 mg in 5 ml expressed as a percentage ?
27) How many milligrams are in 25 mls of a 0.15% Solution?
28) How many grams of a 1 in 400 ointment contain 2 gms active ingredient?
29) How many times must you dilute a 5% solution to give a 1 in 10,000 dilution ?
30) What is the daily dose in mls of a 50 mg in 25 ml injection for a patient weighing 80 Kg if the dose is $50 \mathrm{mcg} / \mathrm{kg} / 6 \mathrm{hrs}$.
31) What volume of Syrup should be added to 75 mls Simple Linctus to prepare Simple Linctus Paediatric
32) What quantity of Dihydrocodeine is required to make 750 mls of a 30 mg in 10 ml solution
33) What dilution of Concentrated Chloroform Water is required to produce Double Strength Chloroform Water
34) A patient is prescribed an I / V injection of 0.6 mg of a drug. The drug is only available as a 125 micrograms in 2 ml injection.
35) The correct dose of Duffocillin is 150 Micrograms/ Kilo. You have a patient who weighs 70 Kg . If the strenth of Dufocillin injection is 250 mg in 5 ml , what is the volume of the correct dose ?

Chapter 2

1) What quantity of Adrenaline in mg is there in a 20 ml vial of 1 in 200,000 Adrenaline
2) A 1 litre infusion of $\mathrm{NaCl} 0.9 \%$ is being given over 16 hours using a standard giving set. If the rate at which the infusion is run is 21 drops per minute, over what time will the infusion actually run. (assume 20 drops per ml)
3) You have been asked to prepare a loading dose of Digoxin for a patient of 0.75 mg to be given over 1 hour in $0.9 \% \mathrm{NaCl}$. by I/V infusion. Calculate what you require.. Finally is this an appropriate loading dose and is the method of administration acceptable.
4) A Patient receives Diamorphine infusion over 24 hours. They currently receive a dose of 150 mg over a 24 hour period using a syringe pump that is calibrated to $48 \mathrm{~mm} / 24$ hours (some syringe pumps are calibrated in $\mathrm{mm} / \mathrm{hr}$). You increase the rate of infusion to $72 \mathrm{~mm} / 24$ hours. What dosage will they now receive ? What problem must you now account for.
5) A Drug representative offers you a special deal on Wonder Drug "Meetoo". You will get a 10% discount as free stock for the next two years providing you buy it through him. You currently use around 10,000 boxes of wonderdrug "Meetoo" every month and each box costs $£ 1.00$ and you send in your first order for 10,000 . Your order arrives and you unpack 11,000 boxes (i.e. it includes your free stock). You look at the Invoice and note a price. How much should you be charged.
6) Calculate the dose of drug X for a 2 stone child if the recommended dose is $2.4 \mathrm{mg} / \mathrm{kg}$.
7) The recommended dose of drug A is $15 \mathrm{mg} / \mathrm{kg} /$ day in divided doses.

On admission, Mrs. X says she is on three 250 mg capsules twice daily. Her weight is 72 kg . Comment on her current dose and make some recommendations.
8) A 70 kg patient requires Dobutamine at a dose of $10 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ and Dopamine $2.5 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$.
(a) Calculate the dose of each drug in
(i) $\mathrm{mg} / \mathrm{min}$
(ii) $\mathrm{mg} / \mathrm{hr}$
(b) Calculate the dose in mls per hour if the infusions are prepared as below :

Dobutamine 250 mg in 50 mls dextrose 5%
Dopamine 200mg in 50mls dextrose 5\%
(c) The patient's urine output improves and his dose of Dobutamine is reduced to $8 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$. Calculate his new dose in $\mathrm{mls} / \mathrm{hr}$.
9) Drug H is to be given as 500 mg in 1 L of sodium chloride 0.9% over 12 hours. calculate the drip rate if the drug is administered using
(a) Solution set $(1 \mathrm{ml}=20$ drops)
(b) Burette set $(1 \mathrm{ml}=60$ drops)
10) The reading on a syringe driver administering drug C is $3.5 \mathrm{ml} / \mathrm{hr}$. The additive label says ' 250 mg in 50 ml ' and the patient's weight is 70 kg . What dose of drug C is the patient receiving in $\mathrm{mcg} / \mathrm{kg} / \mathrm{min}$?
11) Drug J is available as 125 mg and 50 mg capsules. Mr N weighs 82 kg and has been prescribed 12 mg per kg daily in 2-3 divided doses. How would you label the bottles of capsules?
12) Miss Beed is currently on a Heparin infusion. It's 4 pm and you notice her pump is bleeping showing an occlusion and she presses the 'stop' button. The SHO walks onto the ward and asks you how much heparin she has had so far today. The last rate set on the pump was $2 \mathrm{ml} / \mathrm{hr}$ and it had not been altered since it was set up at 6am. Her prescription reads 25,000 units in 50 mls sodium chloride 9%.
How would you calculate the amount she's had so far?
13) Baby S requires an antibiotic suspension for a chest infection. She weighs 15 kg and has been prescribed a dose of $7.5 \mathrm{mg} / \mathrm{kg} /$ day for 7 days divided as a TDS regimen The strength of the suspension is 250 mg in 5 mls .
What dosage would you put on the prepared medicine label?
How should the dose be measured and administered?
14) A nurse asks you how to make a solution of drug R for a soak. She requires 2 L of a 1 in 10,000 solution and she has a concentrate of $10 \mathrm{~g} / \mathrm{l}$. How much of the concentrate does she need?
15) How much of ingredient X is required to make up 150 mls of a 3% solution
a) $\quad 4.5 \mathrm{mg}$
b) $\quad 4.5 \mathrm{gm}$
c) $\quad 3.33 \mathrm{gm}$
d) 1.5 gm
e) $\quad 1.5 \mathrm{mg}$
16) You are asked to calculate the initial dose of aminophylline injection for a 5 year old child weighing 18 Kg who is having breathing difficulties. Each ampoule contains 250 mg in 25 ml . What is the correct dosage if the recommendation is that you administer $5 \mathrm{mg} / \mathrm{kg}$
a) $\quad 90 \mathrm{gm}$
b) $\quad 9 \mathrm{gm}$
c) 900 mg
d) $\quad 90 \mathrm{mg}$
e) $\quad 9 \mathrm{mg}$
17) A patient is being given Chloramphenicol eye drops 0.5% for an eye infection.
i) How much drug is contained in 5 ml .
ii) How much drug is contained in 1 drop if each $1 \mathrm{ml}=20$ drops
i) a) 500 mg
b) $\quad 250 \mathrm{mg}$
ii) a) 1 mg
c) 100 mg
b) 500 micrograms
d) $\quad 50 \mathrm{mg}$
e0 25 mg
c) 250 micrograms
d) 125 micrograms
e) $\quad 62.5$ micrograms
18) The recommended dose of drug F is $25 \mathrm{mg} /$ metre 2. Mr X weighs 70 kg and is 1.85 m tall. Calculate the dose that is is required using the nomogram provided on the next page.

19) What weight or volume of Drug X would be contained in 600 mls of a 0.02% solution?
a) 12 mcg
b) 120 mcg
c) $\quad 1.2 \mathrm{mg}$
d) $\quad 12 \mathrm{mg}$
e) 120 mg
20) How much active substance is required to manufacture a batch of granules for a compressed tablet with a batch size of 420 Kg to produce tablets with a mean weight of 700 mg and an active substance content of 600 mg which includes an overage of 5%
a) $\quad 400 \mathrm{~kg}$
b) 380 Kg
c) 378 Kg
d) 360 Kg
e) 265 Kg
21) A drug has a half life of 7 hours. The drug is administered by I / V and immediately after administration, its plasma level is $68 \mathrm{mcg} / \mathrm{ml}$. What would the plasma concentration be after 28 hours ?
a) $\quad 2.13 \mathrm{mcg} / \mathrm{ml}$
b) $\quad 4.25 \mathrm{mcg} / \mathrm{ml}$
c) $\quad 8.5 \mathrm{mcg} / \mathrm{ml}$
d) $\quad 17 \mathrm{mcg} / \mathrm{ml}$
e) $34 \mathrm{mcg} / \mathrm{ml}$
22) A 25 year old patient takes a single benorilate tablet twice a day. However it is not controlling her pain sufficiently and she is taking Paracetamol as well. How many Paracetamol tablets can she safely take in any 24 hour period?
a) 2
b) 3
c) $\quad 4$
d) 6
e) 8
23) You are asked to make 200 mls of a Copper Sulphate Solution such that when diluted 40 times, a 1 in 8000 solution is obtained. What weight of Copper Sulphate do you need?
a) $\quad 0.1 \mathrm{gm}$
b) $\quad 0.5 \mathrm{gm}$
c) $\quad 1.0 \mathrm{gm}$
d) $\quad 1.5 \mathrm{gm}$
e) $\quad 5.0 \mathrm{gm}$
24) You are asked to send 100 mls of a solution of concentrate X, which when diluted with water 1 in 10 produces a 1 in 1000 solution. You have a 500 ml bottle of a 20% concentrate. Which of the following is the correct formula?
a) $\quad 2.5 \mathrm{ml}$ concentrate, water to 100 ml
b) $\quad 5.0 \mathrm{ml}$ concentrate, water to 100 ml
c) $\quad 7.5 \mathrm{ml}$ concentrate, water to 100 ml
d) 12.5 ml concentrate, water to 100 ml
e) $\quad 22.5 \mathrm{ml}$ concentrate, water to 100 ml
25) A patient is admitted to hospital after taking an overdose of drug X. The patient is comatose and it will not be possible to treat the patient until the blood levels fall below $10 \mathrm{mg} / \mathrm{L}$. How long will this take to the nearest hour given that the half life of the drug is 13 hours and the current level is $84 \mathrm{mg} / \mathrm{L}$
a) 65 hours
b) 52 hours
c) 39 hours
d) 26 hours
e) $\quad 13$ hours
26) Please calculate the amount of product and water in the following preparation:-

How much benzalkonium chloride (1:750 solution), will you need to make one litre of a 1:3000 benzalkonium chloride solution for use as a wet dressing?

Benzalkonium chloride solution \qquad ml
Water \qquad ml
27) Write down the concentrations and units for the following products:
a) clotrimazole 1% cream = \qquad g clotrimazole / \qquad g total product
how much drug will a patient receive from each 5 g applicatorful ?
b) Albuterol 0.083% solution for inhalation contains
\qquad g Albuterol / \qquad ml
how much Albuterol is there in each 3 ml container \qquad g Albuterol
c) Timolol Eye Drops 0.25% x 15 ml contains
\qquad g Timolol / \qquad ml
how much drug will be in each 15 ml bottle of solution ? how much drug will the patient receive in each drop, assuming 20 drops $/ \mathrm{ml}$? how much benzalkonium chloride, used at 0.1% concentration as a preservative, will the patient receive in each drop ?
d) SSKI is short for "Saturated Solution of Potassium Iodide."

Potassium Iodide becomes saturated at a concentration of $1 \mathrm{~g} / \mathrm{ml}$. What percent strength will this solution contain ?
e) A patient is instructed to dilute 0.3 ml of SSKI in one glass (assume 8 oz) of water and drink QID. How much potassium iodide will the patient receive each day ?
28) Please calculate the normal or therapeutic ranges in SI units of the following drugs or electrolytes from the normal or therapeutic ranges given in commonly-used U.S. units.
a. Phenytoin Therapeutic serum concentration range $10-20 \mathrm{mg} / \mathrm{L}$.

Calculate the serum concentration values in units of $\mu \mathrm{Mol} / \mathrm{L}$. given that
Phenytoin MW: 252. Therapeutic phenytoin SI range $=\quad \mu \mathrm{Mol} / \mathrm{L}$
b. Theophylline. Therapeutic serum concentration range $10-20 \mathrm{mg} / \mathrm{L}$.

Calculate the serum concentration values in $\mu \mathrm{Mol} / \mathrm{L}$. given that Theophylline
MW: 180. Therapeutic theophylline SI range $=\quad \mu \mathrm{Mol} / \mathrm{L}$
c. Chloride. Normal serum concentration range $95-105 \mathrm{mEq} / \mathrm{L}$.

Calculate the serum concentration values in units of $\mathrm{mMol} / \mathrm{L}$. given
that Chloride MW: 35.5. normal chloride SI range $=\quad \mathrm{mMol} / \mathrm{L}$
d Carbon dioxide. Normal serum concentration range $22-28 \mathrm{mEq} / \mathrm{L}$.
Calculate the serum concentration values in units of $\mathrm{mMol} / \mathrm{L}$. given that CO2 MW: 44. normal CO2 SI range $=\quad \mathrm{mMol} / \mathrm{L}$
29) Penopril, an Intravenous antibiotic is prescribed for your patient. The preparation comes as a 4 gm in 50 ml infusion pack and the recommended dose is $50 \mathrm{mg} / \mathrm{Kg}$ per day in four divided doses. How much of the infusion will be required for each dose for your patient whose weight is 95 Kg
30) On the ward with a junior doctor, he asks you to calculate the oral Digoxin maintenance dose for a Fred Smith. Fred is 1.75 metres tall and weighs 76 Kg and is 85 years old. His serum creatinine is currently 125 micromoles / ml . The doctor wants a serum concentration of $1.5 \mathrm{mcg} / \mathrm{ml}$. Calculate the maintenance dose to the nearest microgram.

You may need some or all of the following formulas and values :-
Ideal Body Weight $=(0.9 \mathrm{H}-88)$ for males $\mathrm{H}=\mathrm{Height}$ in cm
Creatinine Clearance $=(1.23(140-$ Age $) x \mathrm{Wt}) /($ Serum Creatinine $)$
Digoxin bioavailability $=0.7$
Digoxin clearance $=(0.8 \times \mathrm{Wt})+\mathrm{CL}_{\mathrm{CR}}$
S = 1 (Salt Value)
$\mathrm{C}=1.5 \mathrm{mcg} / \mathrm{L}$
$\mathrm{T}=24 \mathrm{hrs}$
31) You are on the Oncology day unit checking the prescription chart for Fred Ment.

Fred was born in 1938 and is written up for Carmustine to treat a tumour of the brain. Fred weighs 60 kgm . The drug is to be given by intermittent infusion in 0.9% Sodium Chloride. Fred has been prescribed a dose of 400 mg . You decide to check his dose and see that the recommendation is $200 \mathrm{mg} / \mathrm{m}^{2}$. You check Freds height with him as he looks quite short and he tells you his height is about 5 ft 3 inches. Is this the correct dose for Fred and if not, what is? (Use the nomogram for Q18).

You have 10% Coal Tar Ointment and Coal Tar. A Doctor prescribes Coal Tar Ointment 12%. Assuming no waste, what weight of Coal Tar Ointment 10% and Coal Tar (assume w / w) will you need to supply 120 gms of 12% Ointment
a) $\quad 108 \mathrm{gms}$ Ointment, $\quad 12 \mathrm{gms}$ Coal Tar
b) $\quad 112.6 \mathrm{gms}$ Ointment, $\quad 7.4 \mathrm{gms}$ Coal Tar
c) $\quad 117.33 \mathrm{gm}$ Ointment $\quad 2.67 \mathrm{gms}$ Coal Tar
d) $\quad 118 \mathrm{gms}$ Ointment $\quad 2 \mathrm{gms}$ Coal Tar
e) $\quad 118.3 \mathrm{gms}$ Ointment $\quad 1.7 \mathrm{gms}$ Coal Tar
33) You receive a prescription for Acecor for a child but the dose is 6.25 mg QDS. The only available preparation are capsules containing 25 mg . You discuss this with the paediatrician and agree to supply powders made with lactose that each weigh 200 mg .
You are required to supply 30 days treatment. What weight of lactose needs to be added to the capsules to manufacture the powders ? Each capsule weighs 75mg

a)	15.125 gm
b)	21.75 gm
c)	22.8 gm
d)	23.625 gm
e)	24.75 gm

You are about to manufacture a mass that will be used to produce a batch of 1 million tablets The tablets will weigh 250 mg each and the weight of active ingredient will be 100 mg A binder of methylcellulose is to be used representing a total weight of 5% of the final weight. This will be added as a 25% solution and the solvent will be lost through drying. What volume of the Methylcellulose solution will be required?

a)	10 Litres
b)	25 Litres
c)	50 Litres
d)	75 Litres
e)	100 Litres

A Pharmacist keeps a stock of Methadone for his single addict.
He notices that a 5 litre supply will supply this addicts needs for 14 days.
After a short while the Pharmacist agrees to take on the addicts partner.
He notices that the 5 litre supply now lasts for only 10 days.
The addict informs him that he will be going on a long holiday but his partner will be remaining behind.
For how long will a 5 litre supply meet the addicts partners needs ?
(calculate to the nearest day)
What is 'odd ' about this calculation?

Chapter 3

1) You receive a prescription for Morphine Sulphate Mixture to be extemporaneously made by a supplier and purchased in. The mixture is for a child to use and the requested dose is 13 mg in 5 ml . You check with the doctor and confirm the strength.. Having bought 500 ml of this mixture you then decide to clarify its CD status. The Schedule indicates that Morphine below 0.2% calculated as anhydrous Morphine is CD invoice POM otherwise it should be treated as a full CD POM.

$$
\begin{array}{lll}
\text { MW } & \text { Morphine }=303.4 \quad \text { Morphine }(\text { Anhyd })=285.4 \\
& \text { Morphine Sulphate }=758.8 \\
& \text { Morphine is monovalent i.e. } \quad(\text { Morphine })_{2} \text { SO4 } \\
\text { Which CD classification does this preparation come under? }
\end{array}
$$

2) A Patient is prescribed Prednisolone as a descending dose course.

The patient is to take 60 mg OD reducing by 10 mg every 2 days until a dose of 10 mg is reached. She is then to take 10 mg for 7 days and 5 mg for 7 days and then stop.
How many 5 mg tablets would be need to be supplied
If using both 25 mg and 5 mg tablets, how many tablets would need to be supplied?
What is the total dose of Prednisolone taken?
3) A 5 year old Child has been admitted to your ward with Herpes Simplex Encephalitis. The Child weighs 15 Kg is 80 cm tall and has a Body Surface Area of $0.6 \mathrm{~m}^{2}$. The child is prescribed Aciclovir I/V at a dose of 500 mg per $\mathrm{m}^{2} 8 \mathrm{hrly}$ for 10 days Which of the following is the correct dose for this child if following this regimen:Is this the recommended dosage for this condition?
a) $\quad 0.1 \mathrm{~g} \mathrm{tds}$
b) $\quad 0.3 \mathrm{~g}$ tds
c) $\quad 300 \mathrm{~g}$ tds
d) $\quad 7.5 \mathrm{~g}$ tds
e) $\quad 30 \mathrm{~g} \mathrm{tds}$
4) You receive a prescription for the following :-

Alendronic Acid Ointment $0.3 \% \mathrm{w} / \mathrm{w}$ in white soft paraffin x 75 gms
Which of the following is the correct formula :-

	Alendronic Acid	White Soft Paraffin
a)	2.25 gms	to 75 gms
b)	225 mg	to 75 gms
c)	22.5 mg	to 75 gms
d)	225 mcg	to 75 gms
e)	22.5 micrograms	to 75 gms

5) The required dosage for Dobutamine hydrochloride by intravenous infusion is $5 \mathrm{mcg} / \mathrm{Kg} /$ minute. One 20 ml vial of Dobutrex is added to 1 Litre of NaCl $0.9 \% \mathrm{w} / \mathrm{v}$. For a 75 Kg adult, the infusion rate per minute, should be set at:-
a) $\quad 1.0 \mathrm{ml}$
b) $\quad 1.5 \mathrm{ml}$
c) $\quad 2.0 \mathrm{ml}$
d) $\quad 2.5 \mathrm{ml}$
e) 3.0 ml
6) A Doctor running a trial requests the appropriate dosage of Sodium Nitroprusside that he would need to administer to provide a dose of 4.4 nanomoles $/ \mathrm{kg} /$ minute If the patient weighs 76 Kg what volume will be administered in 24 hours by syringe pump. MWt Sodium Nitroprusside $=298$
Sodium Nitroprusside is supplied as a 50 mg in 5 ml Injection.
7) The half life of a drug is the time that it takes for the body concentration to approximately Halve. Values are approximate but complete the following table using the values given. (Calculate the Time and Concentration values in Bold Font - last two columns)

Drug	Half Life in Hrs	Initial Conc	Time to reach :-	Concentra- tion after
Digoxin	48	$1.5 \mathrm{mcg} / \mathrm{L}$	$\mathbf{0 . 3 7 5 m c g / l}$	1 day
Theophylline	8	$24 \mathrm{mg} / \mathrm{l}$	$\mathbf{1 . 5 m g} / \mathbf{l}$	1 day
Phenytoin	24	$20 \mathrm{mg} / \mathrm{L}$	$\mathbf{7 . 5 m g / l}$	1 day
Carbamazepine	35	$14 \mathrm{mg} / \mathrm{l}$	$\mathbf{7 m g} / \mathbf{l}$	3 days
Thyroxine	72	$4 \mathrm{mcg} / \mathrm{L}$	$\mathbf{1 m c g} / \mathrm{L}$	3 days
Amiodarone	360	$18 \mathrm{mcg} / \mathrm{L}$	$\mathbf{1 . 2 5 m c g} / \mathrm{L}$	3 days

8) An Infusion of Sodium Chloride 0.9% with 5% Glucose is to be infused over 12 hours. The total volume is 1.5 Litres. What drop rate needs to be set if the drop volume is 20 per ml .
9) Calculate the quantity of base required for 120 suppositories each containing 100 mg

Sodium Valproate Salt given a suppository mould capacity of 1 gm . The base to be used is Theobroma oil and the displacement value for the salt is given as 1.6.
Use the formula :-
Quantity Base =
Number of Suppositories x Mould Capacity - (Quantity Drug (gms) / Displacement Value)
10) Your dispenser has made 250 gms of Coal Tar 10% in White Soft Paraffin.

You check the prescription and realise that 250 gms of 20% were required. What quantity of Coal Tar do you need to add to the 250 gms of 10% to convert it to 20% dilution?
11) The formula for Creatinine Clearance is :-

Creatinine Clearance (CLCR $)=(\mathrm{C}(140-$ age $) \mathrm{x}$ Weight $) /$ Serum Creatinine
C $\quad=1.23$ for males and 1.04 for females
Weight is in Kg
Serum creatinine in micromols/Litre
Creatinine Clearance is in mls / minute
Remember that

$$
\begin{array}{rlr}
\text { CLCR } & =<10 \mathrm{mls} / \mathrm{min} & \text { Severe renal impairment } \\
& =10-20 \mathrm{mls} / \mathrm{min} & \text { Moderate renal impairment } \\
& =>20 \mathrm{mls} / \mathrm{min} \text { and }<50 \mathrm{mls} / \mathrm{min} & \text { Mild renal impairment } \\
& =>20 \mathrm{mls} / \mathrm{min} \text { and }<50 \mathrm{mls} / \mathrm{min} & \text { Mild renal impairment }
\end{array}
$$

Calculate the missing values from the following table. Try not to use a calculator !!

Patient Sex	Patient Age	Patient Weight	Serum Creatinine	Creatinine Clearance
F	65	55	280	$* * * * *$
$* *$	60	50	300	16.4
M	57	72	185	$* * * * *$
F	85	55	350	$* * * * *$
M	$* * * *$	40	240	175

12)

In the following table, the approximate equivalence of Diamorphine to Morphine BY POTENCY is given for each route. Fill in the missing equivalent doses.

$\underline{\text { Route }}$	Equivalence	Diamorphine dose	Morphine dose
$\underline{\underline{\text { I.V.V. }}}$	$3: 1$	30 mg	
$\underline{\underline{\text { I.M. }}}$	$2.5: 1$	60 mg	
$\underline{\text { S.C. }}$	2.1		
$\underline{\text { P.R }}$	$2: 1$	30 mg	50 mg
$\underline{\text { P.O. }}$	$1.5: 1$	10 mg	

Dextromoramide is twice as potent as Morphine but is shorter acting and hence needs to be given every three hours. Calculate the dose of Dextromoramide that would be equivalent to 50 mg Morphine Sulphate QDS.
14) According to the BNF (Pge 12, Ed 43) The approximate dose of a drug for a child patient can be calculated from their Body Surface Area (BSA) in M^{2} according to the following formula :-
($\mathrm{BSA} / 1.8$) x AD $=$ calculated dose $\mathrm{AD}=$ Adult Dose
This is based on an ideal BDSA of 1.8 for a 70 Kg adult
Fill in the missing values on the following chart
(You may need to refer to the BNF for one or two to calculate the BSA) :-

Body Weight	Age	Calculated BSA	Adult Dose	Calculated dose
		1.4	$6 \mathrm{gm} / \mathrm{day} \times 6 \mathrm{hrly}$	
		2.1	250 mg	
		1.7		150 mg
		2.7		20 mg QDS
	7		200 micrograms	
15	11	1.2	120 mg TDS	

15) The standard formula for calculating the rate of administration using a syringe pump is as follows :-
$R=(D x W x 60 \times V) /(1000 x T)$
Where :-
$\mathrm{R}=$ Rate in $\mathrm{mls} / \mathrm{hr}$
$\mathrm{D}=$ Dose in $\mathrm{mcg} / \mathrm{Kg} / \mathrm{Min}$
W = Weight in Kg
$\mathrm{V}=$ Volume in Syringe in mls
$\mathrm{T}=$ Total amount of drug in syringe in mg

Fill in the missing values :-

\mathbf{R}	\mathbf{W}	\mathbf{D}	\mathbf{V}	\mathbf{T}
	70	25	25	500
3	50	15	25	400
7.5		20	50	1250
10	63		50	900
6	72	12.5		

Chapter 4

The following questions are from Pharmaceutical Society Sample papers and are Multiple Choice Questions. They were originally Open Book (You may \{need to refer\} to the BNF, Drug Tariff or MEPG) or Closed Book in which case no additional references should have been needed.

As of 2002 the calculations are all in a separate section of the Open Book Exam.

Open Book calculation questions MAY need referral to the reference source books
These questions should be capable of being answered within the timeframe of the RPSGB Pre-reg exam which allows 1.7 minutes for open book questions and 1.2 minutes for closed book questions .

Original Open Book Questions - Simple Completion

1) Which of the following is the correct recommended dosage for a 18 month old child that weighs 14 Kg of Salbutamol Oral Solution?
a) $\quad 3 \mathrm{ml} q \mathrm{qs}$
b) $\quad 3.5 \mathrm{ml} \mathrm{qds}$
c) $\quad 4 \mathrm{ml}$ qds
d) $\quad 4.5 \mathrm{ml}$ qds
e) 5 mlqqs
2) A patient with cardiovascular disease is on a restricted sodium diet. You receive a prescription from the patients GP for Gaviscon Liquid. The prescription dose is 10 mls qds pc . The patient advises you that they actually double the dose and take 20 mls qds. How many mmols Sodium ions is the patient taking in 24 hrs .
a) 36 mmols
b) $\quad 42 \mathrm{mmols}$
c) $\quad 48 \mathrm{mmols}$
d) 54 mmols
e) 60 mmls
3) 75 mls of which one of the following solutions would provide 2.25 gms of active ingredients
a) Potassium Permanganate Solution BP
b) Hibiscrub cleansing solution
c) Ster-Zac Bath Concentrate
d) Hydrogen Peroxide 20 volume
e) Hydrogen Peroxide 10 volume
4) A Patient needs to receive 60 mmols Potassium Chloride intravenously. As part of their TPN. The maximum dose the patient is to receive is $5 \mathrm{mmols} /$ hour and they are to receive it by intravenous infusion over a maximum of 24 hours.
30 mls of Potassium Chloride Concentrate Sterile are included as part of a 2.5 litre TPN Infusion bag which is to be administered. Which of the following is the nearest maximum drop rate per minute assuming 20 drops per ml
a) $\quad 700$ drops / minute
b) 420 drops per minute
c) 210 drops per minute
d) $\quad 70$ drops per minute
e) 35 drops per minute
5) An elderly gentleman is admitted to your ward and the doctors require him to receive Digoxin as he is suffering from atrial fibrillation. He is aged 72 and weighs 76 Kg . The ward have Digoxin tablets 0.0625 mg . These have a bioavailability of 0.75 and the volume of distribution is 7.5 litres $/ \mathrm{Kg}$. The Doctors wish to achieve a therapeutic level in the range of 1.5 to $1.75 \mathrm{mcg} /$ Litre. How many tablets should be given as a loading dose ? Formula $=$ Loading Dose $=($ Concentration x Volume of Distribution $) /$ Bioavailability
a) $\quad 5-6 \times 0.625 \mathrm{mg}$ tablets
b) $\quad 10-12 \times 0.0625 \mathrm{mg}$ tablets
c) $\quad 15-16 \times 0.0625 \mathrm{mg}$ tablets
d) $\quad 19-22 \times 0.0625 \mathrm{mg}$ tablets
e) $\quad 25-27 \times 0.0625 \mathrm{mg}$ tablets
6) Drug A consists of 75 mg tablets, The tablets are large oval, enteric coated and orange in colour and weigh approximately 300 mg . A Patient is admitted to the casualty unit having taken an overdose. The contents of their stomach reveal a mass of orange tablets weighing approximately 94 gms and no other visible tablet / drug debris. How much of the drug is likely to have been taken as an overdose ?
a) $\quad 6 \mathrm{gms}$
b) $\quad 12 \mathrm{gms}$
c) 18 gms
d) $\quad 24 \mathrm{gms}$
e) $\quad 30 \mathrm{gms}$
7) Which of the following contains approximately 20 mmols Potassium $\left(\mathrm{K}^{+}\right)$
a) Kay-Cee-L Syrup 5 mls
b) Kloref tablets x 3
c) Slow K tablets x 6
d) Sando-K tablets $x 4$
e) Potassium Chloride Concentrate Sterile x 5 mls
8) You receive a prescription that requires you to supply 150 gms of a 1.5% Drug Y in cetomacrogol cream. You have only cetomacrogol cream and a 2.5\% Drug Y in cetomacrogol cream preparation. What quantity of the 2.5% cream do you need to dilute to 150 gms to prepare a 1.5% Drug X cream ?
a) $\quad 30 \mathrm{gm}$
b) $\quad 45 \mathrm{gm}$
c) $\quad 60 \mathrm{gm}$
d) $\quad 75 \mathrm{gm}$
e) $\quad 90 \mathrm{gm}$
9) A concentrated antiseptic solution contains Chlorhexidine Gluconate and Cetrimide in the ratio 20:1. If a 25 ml sachet contains 0.015% of Chlorhexidine, how many milligrams of Cetrimide will it contain.
a) $\quad 187.5 \mathrm{mg}$
b) $\quad 75 \mathrm{mg}$
c) $\quad 18.75 \mathrm{mg}$
d) $\quad 7.5 \mathrm{mg}$
e) $\quad 187.5$ micrograms

Section 2 Classification

For all the following questions, you are provided with 5 lettered options. For each numbered question select the one lettered option which is closest to the correct answer. Each lettered option may provide the answer once, more than once or not at all in each question set

Questions 1-3 These all concern quantities of Sodium Bicarbonate :-

a)	0.15 g
b)	1.5 g
c)	15 g
d)	150 g
e)	1500 g

1) is contained in Aromatic Magnesium Carbonate 30 ml
2) is contained in 300 gms Magnesium Trisilicate oral powder
3) is contained in 3 mls Kaolin and Morphine Mixture

Questions 4-6 These all concern the number of millimols of Sodium.
a) 1 mmol
b) $\quad 10 \mathrm{mmol}$
c) $\quad 100 \mathrm{mmol}$
d) $\quad 150 \mathrm{mmol}$
e) 1000 mmols
4) is or are contained in approximately 60 gms Sodium Chloride
5) 100 mls of a low sodium antacid must contain less than this quantity of mmols of Sodium
6) Is just at the top of the approximate normal human plasma level of mmols Sodium per Litre

Section 3 - Multiple Completion

For each of the questions in this section ONE or MORE of the responses are correct.
Decide which and then choose :-

A	if 1,2 and 3 are all correct
B	if 1 and 2 only are correct
C	if 2 and 3 only are correct
D	if 1 only is correct
E	if 3 only is correct

Directions Summarised					
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	
1,2 and 3	1 and 2 only	2 and 3 only	1 only	3 only	

1) A Patient has been advised by his Doctor to take supplemental Iron. He has been recommended to take approximately 200 mg Ferrous Iron daily. Which of the following would meet those requirements :-
2) $2 \times$ Feospan Capsules
3) $2 x$ Ferrograd Tablets
4) $2 \times$ Fersaday Tablets
5) Which of the following statements is or are correct (according to the BNF) :-
6) $\quad 100 \mathrm{mg}$ oral morphine is equivalent to 30mg Diamorphine subcutaneously
7) $\quad 120 \mathrm{mg} \mathrm{S} / \mathrm{R}$ oral Morphine is equivalent to 10mg Diamorphine I.M. x 4 hourly x 4 doses
8) $\quad 500 \mathrm{mg} \mathrm{S} / \mathrm{R}$ oral Morphine is equivalent to 30 mg oral Diamorphine x 4 hourly
9) A two year old child weighing 13 kg is to be treated with intramuscular pethidine hydrochloride to relieve pain. Which of the following doses fall within the BNF recommendations :-
10) 0.8 ml of a 10 mg in 1 ml injection
11) 0.3 ml of a 50 mg in 1 ml injection
12) 0.6 ml of a 50 mg in 1 ml injection
13) Which one of the following would provide a dose of 250 mg of Dubutamine
14) 20 mls of a 1.25% Injection Solution
15) 0.5 mls of a 10 gm in 20 ml Injection concentrate
16) 1.25 mls per minute over 1 hour of a 3 gm in 900 ml infusion

Section 4 - Assertion / Reason

The following questions consist of two statements. Decide whether the first statement is true or false and then decide whether the second statement is true or false. Then choose as follows :-

	First Statement	Second Statement	Directions summarised				
A	True	True	2nd statement is a correct explanation of the first				
B	True	True	2nd statement is NOT a correct explanation of the first				
C	True	False					
D	False	True					
E	False	False					

1) First Statement :- 2 Litres of 8.4% Sodium Bicarbonate Solution provides 2000 mmols each of Na^{+}and $\mathrm{HCO}_{3}{ }^{-}$

Second Statement:- $\quad 8.4 \% \mathrm{w} / \mathrm{v}$ Sodium Bicarbonate solution contains $1 \mathrm{mmol} / \mathrm{ml}$ of electrolytes
2) Assume that it is correct that Granicidin for a 50 Kg patient should be infused at a rate of 240 mg per hour and answer with regard to the correctness of the following statements

First Statement :- $\quad 0.2 \%$ of Granicidin in a 500 ml infusion bag should be infused at a rate of 60 ml per 30 minutes

Second Statement :- \quad This represents an infusion rate of $80 \mathrm{mcg} / \mathrm{Kg} / \mathrm{Min}$
3) An injection contains 25 mg of active ingredient in each 12.5 ml ampoule

First Statement :- $\quad 1 \mathrm{ml}$ represents 8% of the volume in each ampoule
Second Statement :- 1 ml contains 2 mg of active ingredient

ORIGINAL CLOSED BOOK QUESTIONS - should not require reference to source texts

Simple Completion

1) You have been asked to calculate the daily dose for a Child who is 2 years old. The child weighs 16 kg . The recommended dose for a child of this age is $150 \mathrm{mcg} / \mathrm{kg} / 6 \mathrm{hrs}$ It is intended to infuse the drug in 500 mls Saline over 24 hours. The injection comes in a strength of 2 mg in 5 ml . What volume of injection to the nearest 0.5 ml needs to be added to the infusion bag.
a) $\quad 22.5 \mathrm{mls}$
b) $\quad 23 \mathrm{mls}$
c) $\quad 23.5 \mathrm{mls}$
d) $\quad 24 \mathrm{mls}$
e) $\quad 24.5 \mathrm{mls}$
2) Potassium permanganate is normally made as a concentrated solution which is then diluted prior to use. The concentrated solution is normally made as a 1 in 800 solution. You are asked to supply a patient with sufficient of this solution to allow them to use 250 mls of the diluted solution (1 in 20) four times a day for 28 days. What quantity of Potassium permanganate will be contained in the volume of solution you supply :-
a) $\quad 17.5 \mathrm{gm}$
b) $\quad 15 \mathrm{gms}$
c) $\quad 1.75 \mathrm{gms}$
d) $\quad 1.5 \mathrm{gms}$
e) $\quad 0.175 \mathrm{gms}$
3) You receive a prescription in your pharmacy for peppermint water to provide a dose equivalent to 0.125 mls tds for a ten year old child. You are asked to dilute this to provide the dose in 10 mls . Assuming you are competent and still allowed to dispense extemporaneously, and assuming you are to supply 300 ml of the final solution, what volume of peppermint water will you require ?
a) $\quad 0.75 \mathrm{ml}$
b) $\quad 1.5 \mathrm{mls}$
c) $\quad 3.75 \mathrm{ml}$
d) $\quad 7.5 \mathrm{mls}$
e) 15 mls
4) What weight of a substance is required to manufacture 6.5 litres of a solution such that when 10 mls is diluted to 1 litre a 1 in 200,000 solution results?
a) $\quad 65 \mathrm{gms}$
b) $\quad 32.5 \mathrm{gms}$
c) $\quad 6.5 \mathrm{gms}$
d) $\quad 3.25 \mathrm{gms}$
e) 0.65 gms
5) What volume of a 6.5% solution of Benzalkonium Chloride is required to produce 1.5 Litres of 4.25% Solution?
a) $\quad 980 \mathrm{mls}$
b) $\quad 990 \mathrm{mls}$
c) $1,000 \mathrm{mls}$
d) $1,100 \mathrm{mls}$
e) $1,200 \mathrm{mls}$
6) The formula for making Ferrous Sulphate Mixture is as follows :-

Ferrous Sulphate $\quad 60 \mathrm{mg}$
Ascorbic Acid $\quad 10 \mathrm{mg}$
Orange Syrup $\quad 0.5 \mathrm{mls}$
Chloroform Water DS to 5 mls
You are asked to prepare 900 mls . What quantity of Ferrous Sulphate is required :-
a) $\quad 9.4 \mathrm{gms}$
b) $\quad 9.8 \mathrm{gms}$
c) $\quad 10.4 \mathrm{gms}$
d) $\quad 10.8 \mathrm{gms}$
e) $\quad 11.4 \mathrm{gms}$
7) Referring to the above formula, what is the percentage concentration of Orange Syrup in 900 ml of final solution?
a) $\quad 0.1 \% \mathrm{w} / \mathrm{v}$
b) $\quad 1.0 \% \mathrm{v} / \mathrm{v}$
c) $\quad 1.0 \% \mathrm{w} / \mathrm{v}$
d) $\quad 1.0 \% \mathrm{v} / \mathrm{v}$
e) $10 \% \mathrm{v} / \mathrm{v}$
8) A 65 kg Patient on your Cardiac Unit is to be transferred to intravenous Dopamine infusion. The Patient is to receive a dose of 4 micrograms $/ \mathrm{kg} /$ minute. The infusion contains 250 mg in 20 ml of Dopamine which was added to 50 ml Infusion Solution The infusion is to be administered via a 100 ml volume syringe pump. What rate in $\mathrm{mls} /$ hour should the infusion rate be set at.
a) $\quad 4.4 \mathrm{mls}$
b) $\quad 4.6 \mathrm{mls}$
c) $\quad 4.8 \mathrm{mls}$
d) $\quad 5.0 \mathrm{mls}$
e) $\quad 5.2 \mathrm{mls}$
9) You are asked to calculate the initial dose of a Cardiac Drug to be injected for a 5 year old Child who weighs 16.5 Kg . They are currently experiencing hypertensive difficulties.
Each ampoule of drug contains 12.5 mg in 10 ml . What is the correct volume required if the recommendation is that you administer $7.5 \mathrm{mg} / \mathrm{kg}$
a) $\quad 1.0 \mathrm{ml}$
b) $\quad 5.0 \mathrm{ml}$
c) $\quad 10 \mathrm{ml}$
d) $\quad 50 \mathrm{ml}$
e) 100 ml
10) A Patient is admitted through casualty having taken an overdose of Killeroxin. The patients blood levels are measured and the blood level is found to be 108 micrograms / Litre.
It is now over 4 hours since the patient took their overdose so absorption may be considered complete.
The half life of the drug is 8.5 hours and its elimination is 1 st order Assuming that the maximum recommended therapeutic level is 14 micrograms / Litre, how many hours to the nearest complete hour or half hour will it take for levels to reach normal therapeutic levels.
a) $\quad 17.0$ hours
b) $\quad 25.5$ hours
c) $\quad 34.0$ hours
d) $\quad 42.5$ hours
e) $\quad 51.0$ hours
11) Mrs Jones is HIV positive and has been admitted for caesarian section.. She weighs 63 Kg and is 26 years old. During labour Zidovudine is to be administered IV at a dose of $2 \mathrm{mg} / \mathrm{kg}$ over 1 hour. What volume of Sodium Chloride 0.9% is needed to produce a $2 \mathrm{mg} / \mathrm{ml}$ Zidovudine Infusion for this patient. The Zidovudine is available as a 200 mg in 20 ml Ampoule.
a) $\quad 12.6 \mathrm{mls}$
b) $\quad 25.2 \mathrm{mls}$
c) $\quad 50.4 \mathrm{mls}$
d) $\quad 63 \mathrm{mls}$
e) $\quad 239.4 \mathrm{mls}$

A patient's prescribed Prednisolone 75 mg OD with instructions to reduce the dose by 10 mg every 7 days until at 5 mg and then to continue taking 5 mg tablets for a further 14 days and then stop. How many tablets should be supplied ?
a) 255
b) 305
c) 355
d) 405
e) 455
13) A baby girl on your neonatal Unit has been admitted with meningococcal meningitis. The recommended treatment is Benzylpenicillin at a dose of $180 \mathrm{mg} / \mathrm{Kg} /$ Day given in 4 divided doses. It's intended to use single vials of 600 mg reconstituted to a final volume of 2 ml for each set of daily doses, reconstituted in your CIVAS unit and four syringes are to be prepared and sent to the ward each day.. You contact the nursing staff and are informed that the girl weighs 6 Kg . What volume should each syringe contain..
a) $\quad 0.8 \mathrm{ml}$
b) $\quad 0.9 \mathrm{ml}$
c) $\quad 1.0 \mathrm{ml}$
d) $\quad 1.1 \mathrm{ml}$
e) $\quad 1.2 \mathrm{ml}$
14) You currently have Phenol $95 \% \mathrm{v} / \mathrm{v}$. This solution is to be diluted to give a 1 in $10,000 \mathrm{v} / \mathrm{v}$ Phenol for swabbing down lab benches and walls. You are required to make 10 Litres of the diluted solution. How much of the Phenol solution will you require ?
a) $\quad 0.9 \mathrm{ml}$
b) $\quad 0.95 \mathrm{ml}$
c) $\quad 1.0 \mathrm{ml}$
d) $\quad 1.05 \mathrm{ml}$
e) 1.1 ml
15) You are required to send $250 \mathrm{mls} w / \mathrm{v}$ of a solution of Benzalkonium Chloride Solution such that when diluted 1 in 40 it produces a 1 in $1000 \mathrm{w} / \mathrm{v}$ solution. You have Benzalkonium Chloride concentrate $50 \% \mathrm{w} / \mathrm{v}$. What volume of concentrate is required to produce your initial solution?
a) $\quad 12 \mathrm{mls}$
b) $\quad 15 \mathrm{mls}$
c) 20 mls
d) 25 mls
e) $\quad 30 \mathrm{mls}$
16) Paediatric Ferrous Sulphate Mixture contains 1.2\% Ferrous Sulphate. The molecular formula of Ferrous Sulphate is $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2}$ Oand the molecular weight is 278 . The atomic weight of Iron (Fe) is 56 . How many milligrams of Fe are there in a 15 ml dose of this mixture ?
a) $\quad 36 \mathrm{mg}$
b) $\quad 40 \mathrm{mg}$
c) $\quad 48 \mathrm{mg}$
d) $\quad 60 \mathrm{mg}$
e) $\quad 72 \mathrm{mg}$
17) A Consultant requests the following :-

Dithranol 1.5\%
Salicylic Acid 1%
in White soft paraffin x 150 gms
Which of the following is the correct quantities to use :-

	Dithranol	Salicylic Acid	White Soft Paraffin
a)	1.5 gm	1 gm	147.5 gm
b)	15 gm	10 gm	130 gm
c)	2.25 gm	1.5 gm	150 gm
d)	2.25 gm	1.5 gm	146.25 gm
e)	20 gm	15 gm	125 g

18) Drug X, a class 1 antiarrythmic is renally excreted. It is administered by intravenous infusion. The data sheet provides the following recommendations :-

Creatinine Clearance $>50 \mathrm{ml} / \mathrm{min}$	Dosage $5 \mathrm{mg} / \mathrm{L} \mathrm{kg}$	Frequency $25-50 \mathrm{ml} / \mathrm{min}$
$10-25 \mathrm{ml} / \mathrm{min}$	$2.5 \mathrm{mg} / \mathrm{L} \mathrm{kg}$	12 hourly
$0-10 \mathrm{ml} / \mathrm{L} \mathrm{kg}$	$2.5 \mathrm{mg} / \mathrm{L} \mathrm{kg}$	24 hrly
	$1.25 \mathrm{mg} / \mathrm{L} \mathrm{kg}$	24 hrly

The formula you are given for for Creatinine Clearance (CC) is

$$
\mathrm{CC}=(1.2(140-\mathrm{A}) \mathrm{x} \mathrm{~W}) / \mathrm{SC}
$$

$\mathrm{A}=$ Age,$\quad \mathrm{W}=$ Weight $(\mathrm{Kg}) \quad \mathrm{SC}=$ Serum Creatinine $(\mathrm{mmol} / \mathrm{L})$
You have a patient who is a 60 yr old non obese male. He weighs 50 kg and his last plasma creatinine was measured as $300 \mathrm{mmol} / \mathrm{L}$. This is remaining steady.
Which of the following doses of Drug X would be appropriate :-
a) $\quad 275 \mathrm{mg} \mathrm{x} 12 \mathrm{hrs}$
b) $\quad 125 \mathrm{mg} \times 12 \mathrm{hrs}$
c) $\quad 125 \mathrm{mg} \times 24 \mathrm{hrs}$
d) $\quad 75 \mathrm{mg} \mathrm{x} 12 \mathrm{hrs}$
e) $\quad 75 \mathrm{mg} \mathrm{x} 24 \mathrm{hrs}$
19) A solution of Sodium Acid Phosphate contains 109.2 gms in 1 Litre.

This is equivalent to a 0.7 molar solution.
What is the Gram Molecular Weight or Relative Molecular Mass of Sodium Acid Phosphate
a) $\quad 3.12 \mathrm{~ms}$
b) $\quad 15.6 \mathrm{gms}$
c) $\quad 31.2 \mathrm{gms}$
d) $\quad 156 \mathrm{gms}$
e) $\quad 312 \mathrm{gms}$
20) The formula for Screenistat Ointment is as follows :-

Screenistat	2 gm
Beeswax	20 gm
White Soft Paraffin	30 gm
Light Liquid Paraffin	25 mls
Cetosteryl Alcohol	33 gms

You are required to manufacture 750 gm of the above.
Which of the following is the correct formula:

Ingredient	A	B	\mathbf{C}	\mathbf{D}	\mathbf{E}
Screenistat	14 gm	28 gm	28 gm	14 gm	28 gm
Beeswax	140 gm				
WS Paraffin	210 gm				
LL Paraffin	175 gm	175 gm	175 ml	175 ml	175 gm
Cetosteryl Alc.	231 gm	231 ml	231 ml	231 gm	231 gm

21) What amount of base is required to manufacture 50 suppositories, each containing 100 mg Theophylline if each suppository will weigh 1 gm and the displacement value of Theophylline is 0.5
a) $\quad 40 \mathrm{gms}$
b) $\quad 42.5 \mathrm{gms}$
c) 45 gms
d) $\quad 47.5 \mathrm{gms}$
e) 50 gms
22) How many micromols of an active ingredient is contained in 2 ml given that its Gram Molecular weight or RMM is 50 gms and the solution is 1 in 10,000
a) 5
b) 4
c) 3
d) 2
e) 1
23) A 11 year old is having a two week stay with his parents in Eastern Transvaal (an Endemic malaria area). Assuming Chloroquine and Proguanil are the required medication, how many Proguanil hydrochloride tablets would be necessary to provide prophylactic cover for the child?
a) $\quad 28$
b) $\quad 49$
c) $\quad 74$
e) $\quad 98$
f) 112
24) An infusion pump is used to administer Epinephrine (Adrenaline) to a patient at a rate of 4 mls per minute. Adrenaline solution 1 in 10,000 is to be administered. What quantity in milligrams of adrenaline will be supplied per hour.
a) 24
b) 36
c) $\quad 48$
e) $\quad 72$
f) 112
25) What is the correct dose volume of Epanutin Syrup for a child weighing 15 kg given that the initial daily dose is $5 \mathrm{mg} / \mathrm{Kg}$. Phenytoin suspension contains 60 mg in 10 ml and is recommended to be given at 12 hourly intervals
a) $\quad 62.5 \mathrm{mls}$
b) $\quad 35 \mathrm{mls}$
c) $\quad 25 \mathrm{mls}$
d) $\quad 12.5 \mathrm{mls}$
f) $\quad 6.25 \mathrm{mls}$

A batch of 100,000 tablets containing 100 mg of Drug A are about to be spray coated with a coloured enteric coating. This coating will represent 5% of the final tablet weight. Each tablet weighs 1.9 gms . The tablets are to be rolled in a copper drum during this process and the coating will be applied at approximately 20 micrograms per second per tablet and dried with the simultaneous passing of hot dry sterile air. How long to the nearest minute will the spray coating take.

a)	20 minutes
b)	41 minutes
c)	62 minutes
d)	83 minutes
e)	104 minutes

28) A patient is being given Timoptol Eye Dops 0.5% for an eye infection. They are using the drops every six hours and are putting two drops into each eye. Assuming that 50% of each does is absorbed, what dose of Timoptol is being provided systemically every 24 hours. (Assume 20 drops $=1 \mathrm{ml}$)
a) $\quad 1 \mathrm{mg}$
b) $\quad 2 \mathrm{mg}$
c) $\quad 3 \mathrm{mg}$
d) 4 mg
e) $\quad 5 \mathrm{mg}$
f) $\quad 6 \mathrm{mg}$
29) A Patient needs to be given 120 mmols Of Phosphate intravenously, as part of their TPN. The maximum dose the patient is to receive is 2.5 mmols / hour and they are to receive it by intravenous infusion over time. The Phosphate is added as part of a 2.4 litre TPN Infusion bag which is to be administered over a maximum of 2 days. Which of the following is the nearest maximum drop rate per minute that needs to be set on the giving set (assuming 20 drops per ml) to administer the I.V.
a) $\quad 22$ drops / minute
b) 34 drops per minute
c) 46 drops per minute
d) 58 drops per minute
e) 70 drops per minute

Section 2 Classification

The following 3 questions concern the following quantities :-
a) $\quad 70 \mathrm{mg}$
b) $\quad 30 \mathrm{mg}$
c) $\quad 18.75 \mathrm{mg}$
d) $\quad 6.25 \mathrm{mg}$
e) $\quad 2.5 \mathrm{mg}$

Select from A to E the quantity that represents

1) 0.25% of 7.5 gms
2) The number of mg of Potassium Chloride contained in 5 mls of an original solution which when diluted 1 in 250 provides 2.5 mg in 500 ml
3) Given the Molecular weight of Sodium Chloride is 60, contains 500 micromols of Sodium Chloride

The following 6 questions concern the following quantities :-
a) 1000 millimols
b) $\quad 150 \mathrm{mmols}$
c) $\quad 100 \mathrm{mmols}$
d) 15 mmols
e) 10 mmols
4) The approximate number of millimoles per litre of Sodium in serum
5) The number of millimoles in one mole
6) The number of millimoles of Calcium equivalent to 200 mEq Calcium
7) The approximate number of millimoles of Chloride in Serum
8) The approximate number of millimoles of Sodium excreted normally in 24 hours
9) The number of millimoles per litre Bicarbonate in a 100 mEq per 100 ml solution of Sodium Bicarbonate.

Section 3 - Multiple Completion

For each of the questions in this section ONE or MORE of the responses are correct. Decide which and then choose :-

A if 1,2 and 3 are all correct
B if 1 and 2 only are correct
C if 2 and 3 only are correct
D if 1 only is correct
E if 3 only is correct

Directions Summarised					
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	
1,2 and 3	1 and 2 only	2 and 3 only	1 only	3 only	

Referring to the following values :-

1) $\quad 1 \mathrm{~mole}$
2) Molecular Weight in grams
3) The sum of the individual atomic weights
4) A Solution containing 1 mole of active ingredient in 100 ml diluted one part in 10 with purified water would contain in one litre ?
5) You are asked to make 2500 mls of a Potassium Permanganate Solution such that when diluted 30 times, a 1 in 1800 solution is obtained. Which of the following are correct :-
6) The concentration of the 'mother' solution is approximately 1.7%
7) The concentration of the final solution is approximately 0.05%
8) The $1,800 \mathrm{ml}$ of Potassium permanganate will contain 10 gms Potassium permanganate

An Exercise with Benorilate

Benorilate Suspension contains 2 gm of Benorilate in 5 ml
Benorilate tablets contain 750 mg Benorilate

1 gm of Benorilate is equal to 485 mg Paracetamol and 0.525 mg Aspirin
What is the maximum total daily dose of Benorilate suspension and tablets given that :-

Maximum dose of Paracetamol in 1 day is 4 gm ($8 \times 500 \mathrm{mg}$ tablets)
Maximum dose of Aspirin in 1 day is 4 gm ($13 ? \times 300 \mathrm{mg}$ tablets)
The maximum recommended dose of Benorilate is 6 gms daily for the elderly. What dose of Aspirin and Paracetamol does this represent.

An Exercise with Potassium Chloride

1) Potassium Chloride is to be administered to a child weighing 44lbs at a dose of 0.5 mEq Potassium per Kg

This is prescribed to be administered over 4 hours in 250 mls of 5\% Dextrose Saline The maximum recommended rate of administration for Potassium Chloride is $1.5 \mathrm{Meq} / \mathrm{kg} / 24$ Hours for a child

Assume that $2.2 \mathrm{lbs}=1 \mathrm{Kg}$
Questions

1) What is the Patients weight in Kg
2) What is the dose of Potassium to be administered
3) What is the mmol equivalent of Potassium Chloride
4) What is the maximum recommended 24 hour dose for a child of this weight
5) Using Potassium Chloride Concentrated solution (sterile) how much would you add to a 250 ml bag
6) Why would you use the concentrate
7) Is the infusion rate within the recommended limits
8) Assuming the dose is within recommended limits what is the flow rate in drops / minute (assume 20 drops $/ \mathrm{ml}$)
9) What is the error level if the drop rate is rounded down/up - is this acceptable
10) If the maximum recommended dose rate were 25% of the one recommended above, what would be the maximum flow rate you could use.
11) When made up, what is the concentration of Potassium chloride in 250 ml in parts per 1000 as w/v
12) What is the answer to Q9 expressed as a percentage.

Some Useful Maths

Tips

Always keep units the same and the number of significant places (if relevant) and where possible use whole numbers rather than fractions. If asked to calculate a drug dose, don't give an answer like 1.34654 mg . Round up as 1.35 mg . Limit your answer to practical levels of accuracy. Also be aware of human errors and /or discrepancies. One RPSGB asked "How many milligrams of" and then gave a multiple choice answer in which the correct answer was in micrograms.

Some useful values to remember are :-

10 mg in 1 ml	$=1 \% \mathrm{w} / \mathrm{v} \quad$ or 1 gm in 100 mls
1 mg in 1 ml	$=0.1 \% \mathrm{w} / \mathrm{v}$ or 1 gm in $1000 \mathrm{mls}(1 \mathrm{Litre})$
1 mcg in 1 ml	$=0.0001 \% \mathrm{w} / \mathrm{v}$ or 1 gm in $1,00,000 \mathrm{mls} \quad 1$ in a million
1000 mls	$=1$ Litre
1 ml	$=1$ millilitre (This is often forgotten)
1 mol	$=1000$ millimols (normally written as 1000 mmol$)$
1 millimole	$=1,0000$ micromoles
1 micromole	$=1,000$ nanomoles
$1 \mathrm{~mol} /$ litre	$=1 \mathrm{mmol} / \mathrm{ml}, \quad 1 \mathrm{mmol} /$ litre $=1$ microlmole $/ \mathrm{ml}$
1 Mole	$=$ Molecular Weight in grams or Relative Molecular Mass in grams
1 Molar solution	$=$ Gram Molecular Weight or Relative Molecular Mass in grams in 1 Litre

Displacement Values

To convert weights to volume you may need to use specific gravity / density e.g. if asked to produce a weight in volume of two liquids. (rare). The commonest way you will encounter this is 'Displacement Values' which indicates the relative density of an active ingredient and its diluent base. The displacement value is the number of parts by weight of an ingredient that will displace one part by weight of the diluent base. Displacement values are only required where the quantity of active ingredient is quoted as a quantity rather than as a percentage. This is to ensure an accurate dose is administered ad is usually required for solid dosage forms for internal use e.g. tablets, capsules, suppositories, pessaries etc.

The formula is

$$
\mathrm{A}-(\mathrm{B} / \mathrm{C})=\mathrm{D}
$$

Where $A=$ Final weight required
B $=$ Weight of Active Ingredient
$\mathrm{C}=$ Displacement Value
$\mathrm{D}=$ Weight of Diluent to use

PARTS AND RATIOS

1 part in 10	$=10 \%$	$=100 \mathrm{mg}$ in $1 \mathrm{ml} \mathrm{w} / \mathrm{v}$
1 part in 100	$=1 \%$	$=10 \mathrm{mg}$ in $1 \mathrm{ml} \mathrm{w} / \mathrm{v}$
1 part in 1,000	$=0.1 \%$	$=1 \mathrm{mg}$ in $1 \mathrm{ml} \mathrm{w} / \mathrm{v}$
1 part in 10,00	$=0.01 \%$	$=1 \mathrm{mg}$ in $10 \mathrm{mls} \mathrm{w} / \mathrm{v}$
1 part in $1,000,000$	$=0.0001 \%$	$=1$ microgram in $1 \mathrm{ml} \mathrm{w} / \mathrm{v}$
1 part in 8,000	$(=0.1 \% / 8)$	$=0.0125 \% \mathrm{w} / \mathrm{v}$

In an expression such as 1 in 1000, it will be assumed you know the SI units are equivalent I.e. it is 1 gm in 1000 mls and not 1 mg in 1000 mls

```
1:3 implies a ratio of 1 part of A to 3 parts of B i.e. 4 parts in total = 1 in 4
1:5 = i in 6 etc
1:10 = 1 in 11
```

Ratios are usually used where there are two active ingredients in a common base.
e.g. A Solution of Chlorhexidine and Cetrimide solution where the ratio of Chlorhexidine to Cetrimide may be present in the ratio of $1: 10$. I.e. the strength of Cetrimide is 10 times stronger than the Chlorhexidine

Some Roman Numerals

These are usually now only encountered in prescribers 'dosage instructions'.

ss $=1 / 2$	xi $=11$	I or $L=50$
I or $\mathrm{I}=1$	xii $=12$	XXX $=30$
ii $=2$	xiii $=13$	Xl or XL $=40$
iii $=3$	xiv $=14$	C $=100$
iv $=4$	xv $=15$	$\mathrm{D}=500$
$\mathrm{v}=5$	xvi $=16$	$\mathrm{M}=1000$
vi $=6$	xvii $=17$	
vii $=7$	xviii $=18$	
viii $=8$	xix $=19$	
ix $=9$	$x x=20$	
$x=10$	$x x i=21$	

Duration of Supply

$1 / 7=1$ day $\quad 1 / 52=1$ week
$1 / 12=1$ month (28 days)

Frequency of Administration

$$
\begin{array}{ll}
\text { tds or TDS = Three times a day } & \text { qds or } \mathrm{QDS}=\text { Four times a day } \\
\text { stat }=\text { immediately } & \text { od or OD }=\text { daily }
\end{array}
$$

Ideal Body Weight

$$
\begin{array}{ll}
\text { IBW }=(0.9 \times H)-X & H=\text { height in cm } \\
& X=88 \text { for Males, } X=92 \text { for Females }
\end{array}
$$

Bioavailability

The Bioavailability of a drug (usually given as F) is the fraction of any dose which reaches the systemic circulation. It is normally given as a number between 0 and 1 . This is NOT the same as the amount of base drug where different presentations of a drug may use different salts. The salt value is usually given the letter S

Quantity reaching systemic circulation $=$ Bioavailability (for that route) x Salt fraction x Dose $\mathrm{Q}=\mathrm{F} \times \mathrm{S} \times \mathrm{D}$
The concept of bioavailability indicates that for any drug, a bioavailability of less than 1 indicates some of the drug is not absorbed. Therefore is it is known what therapeutic drug level is required, two new doses can be identified :-
$\begin{array}{ll}\text { Loading Dose } & =\text { initial dose to achieve a particular therapeutic drug level } \\ \text { Maintenance Dose } & =\text { dosage to maintain a particular therapeutic drug level }\end{array}$
So Quantity of Drug in Systemic Circulation and by substituting from above Loading Dose = Quantity of drug in body / F x S

Loading doses are normally calculated on the assumption that no or little elimination occurs while reaching initial therapeutic levels. This is valid if half lives are long and absorption rapid. It is considered unnecessary to account for elimination where the infusion of a drug or its absorption is less than $1 / 4$ of the half life

Maintenance Dose	$=$ Quantity of drug removed $/ \mathrm{F} \times \mathrm{S}$
but	Amount of drug removed $=\mathrm{V}_{\mathrm{D} \times \mathrm{C}}$
so	Maintenance dose $(\mathrm{mg} / \mathrm{hr})=\mathrm{VD} \times \mathrm{C} / \mathrm{F} \times \mathrm{S}$

This would be multiplied by the frequency of dosing
so \quad Maintenance dose $(\mathrm{mg} / \mathrm{H}$ hrs $)=(\mathrm{VD} \times \mathrm{C} / \mathrm{F} \times \mathrm{S}) \times \mathrm{H}$
Volume of Distribution (Apparent)
$\mathrm{VD}=$ Amount of drug absorbed $/$ serum concentration $=\mathrm{Q} / \mathrm{C}$
Also
So

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{F} \times \mathrm{S} \times \mathrm{D} \\
& \mathrm{VD}=\mathrm{F} \times \mathrm{S} \times \mathrm{Q} / \mathrm{C} \\
& =\mathrm{C} \times \mathrm{VD} / \mathrm{F} \times \mathrm{S}
\end{aligned}
$$

$(\mathrm{CxVD}=\mathrm{Q})$
$\mathrm{Vd}=($ Apparent $)$ Volume of Distribution and its units are always expressed in litres / kg body weight.
For a 50 Kg patient with a Vd of 6 litres, the total apparent distribution volume $=6 \times 50=300$ Litres

Creatinine Clearance

Creatinine Clearance $(\mathrm{CLCR}) \quad=(\mathrm{C}(140-$ age $) \mathrm{x}$ Weight $) /$ Serum Creatinine
$\mathrm{C}=1.23$ for males and 1.04 for females
Weight is in Kg
Serum Creatinine in micromols/Litre
Creatinine Clearance is in mls / minute

$$
\begin{aligned}
\text { CLCR } & =<10 \mathrm{mls} / \mathrm{min} & & \text { Severe renal impairment } \\
& =10-20 \mathrm{mls} / \mathrm{min} & & \text { Moderate renal impairment } \\
& =>20 \mathrm{mls} / \mathrm{min} \text { and }<50 \mathrm{mls} / \mathrm{min} & & \text { Mild renal impairment }
\end{aligned}
$$

These may or may not be of use

100	$=1$	$=1 / 1$
50%	$=0.5$	$=1 / 2$
25%	$=0.25$	$=1 / 4$
12.5%	$=0.125$	$=1 / 8$
6.25%	$=0.0625$	$=1 / 16$
3.125%	$=0.03125$	$=1 / 32$

Can't divide by $5 \quad$ Then multiply by 2 and divide by $10=$ easier

If using a giving set graded in drops

20 drops $=1 \mathrm{ml}$ (adult)
60 drops $=1 \mathrm{ml}$ (paediatric)

No of drops per minute $=$ No of mls per hour $/ 3$
No of drops per minute $=$ No of mls per hour

ALLIGATION - A Brief Introduction

Dilution by Alligation

This is really a simple method of calculating the required quantities of two different concentrates to provide a final solution. Here is a simple example :-

Solution A has a concentration of Ac (and is the stronger solution)
Solution B has a concentration of Bc (and is the weaker solution)
We require some amount (Volume here although it works equally well for weight) of a Solution of concentration Fc

Alligation

Parts of Solution A required $=$ Final Required Concentration - Concentration of Solution B This can be expressed as $\mathrm{Pa}=\mathrm{Fc}-\mathrm{Bc}$

Parts of Solution B required = Concentration of Solution A - Finalor Required Concentration
This can be expressed as $\mathrm{Pb}=\mathrm{Ac}-\mathrm{Fc}$
Also Total parts $=\mathrm{Pa}+\mathrm{Pb}=(\mathrm{Fc}-\mathrm{Bc})+(\mathrm{Ac}-\mathrm{Fc})=\mathrm{Ac}-\mathrm{Bc}$
These simple formulae can be used for either weights or volumes.
Weights and volumes can be intermixed as long as you ensure you use the right units for the amounts required. (In reality there may be some slight variations due to Specific gravity, density etc.)

Alligation represented diagrammatically

Alligation can be represented as a square where the formulas lie along the diagonals

Concentration Of First solution (Ac)			Parts of First Solution needed (Pa)	
	-		$=$	
		Required Concen- tration (Fc)		
	-		$=$	
Concentration of Second Solution (Bc)			Parts of Second Solution Required (Pb)	

Example using weights

You have an ointment that contains 55\% of ingredient A
You also have an ointment that contains 15\% Ingredient A
You are required to dispense a 500 gms of an ointment containing 35% of ingredient A .
You have no alternative but to mix quantities of the ointments above.
What quantity of each of the above would need to be mixed together to provide 500 gms of $35 \% \mathrm{~A}$?

By Alligation :-

Parts of the 55% ointment required would be $35-15=20$ parts $\quad(\mathrm{Pa}=\mathrm{Fc}-\mathrm{Bc})$
Parts of the 15% ointment required would be $55-35=20$ parts $(\mathrm{Pb}=\mathrm{Ac}-\mathrm{Fc})$
$20+20=40$ parts in total and there would be 20 parts of each or simply put there would be 50% of each So here there would be 50% of each and the total number of parts $=40=(55-15)$

Example 2 - Using Volumes and Weights combined

We have a 6% Solution of Chlorhexidine
We require 1 litre of a 30% solution
This is to be made by adding Chlorhexidine.
How much Chlorhexidine needs to be added ?
(Note - The concentration of Pure Chlorhexidine should be treated as 100\%)

By alligation :-

Parts of Chlorhexidine (powder) required $=30-6=24$ parts $(\mathrm{Pa}=\mathrm{Fc}-\mathrm{Bc})$
Parts of Chlorhexidine 6% solution required $=100-30=70$ parts $(\mathrm{Pb}=\mathrm{Ac}-\mathrm{Fc})$
(remember the Chlorhexidine is 100%)
Total parts $=70+24=94$
Therefore to make 1 litre you would need
($70 / 94$) $\times 1000$ parts of 6% Chlorhexidine solution - $744.68 \underline{\text { mls }}$
And of Chlorhexidine you would need
$(24 / 94) \times 1000 \mathrm{gms}=255.32 \mathrm{gms} \quad(24$ out of 94 parts of the $1000 \mathrm{mls} \underline{\text { BUT in grams })}$

A quick checksum on calculation above

In 1 litre of 30% solution there must be 300 gms Chlorhexidine
744.68 mls of 6% Chlorhexidine contain $6 \times 7.45 \mathrm{gms}$ Chlorhexidine $=44.7 \mathrm{gms}$
(each 100 mls contains 6 gms so in 744.68 mls (745 mls approx) there are $6 \times 7.45 \mathrm{gms}$)
and $44.7+255.32=300 \mathrm{gms}$ (approx)

- \quad some rounding up and down was done to keep to 2 significant decimal places.
- (and note that $\mathrm{Ac}-\mathrm{Bc}=100-6=94$ parts)

Example 3 using Volumes only

You have a solution of Potassium Permanganate of 4%
You also have another Potassium Permanganate Solution containing 50\%.
How much of each is needed to produce a 300 mls of a solution that is 24%

By alligation :-

$\mathrm{Pa}=24-4=20$ parts $\quad \mathrm{A}$ is the 50% Solution
$\mathrm{Pb}=50-24=20$ parts $\quad B$ is the 4% Solution
Total parts $=20+26=46$ parts (Note that $\mathrm{Pa}-\mathrm{Pb}=50-4=46$ parts)
Therefore what is needed is 46 parts which equal 300 mls :-

Of A

$(20 / 46) \times 300 \mathrm{mls}$ of Solution A $=130.43 \mathrm{mls} \quad$ (i.e. 20 parts out of 46 will be Solution A)
and of B
$(26 / 46) \times 300 \mathrm{mls}$ of Solution $B=169.56 \mathrm{mls} \quad$ (i.e. 26 parts out of 46 will be Solution B)
(and as a check, note that $169.56+130.43=300)$

A Little More on Alligation

Alligation - Definition

1) The act of tying together or attaching by some bond, or the state of being attached.
2) - (Arithmetical) A rule relating to the solution of questions concerning the compounding or mixing of different ingredients, or ingredients of different qualities or values.

Here's a non-pharmaceutical example of the Alligation Process

A zoo has 80 animals.
When counted, the legs of the animals add up to 260.
The Zoo has only 2 legged animals and 4 legged animals.
All the 4 legged animals are alligators,
How many alligators are there?

1) 30 Alligators
2) 40 Alligators
3) 50 Alligators
4) 60 Alligators

Solution:-

Let the number of 4 legged animals $=\mathrm{Pa}$
Then the number of 2 legged animals $=\mathrm{Pb}$
$\mathrm{Pa}+\mathrm{Pb}=80$ As there are 80 Animals in total (The animals are the 'Parts')
$\mathrm{Pb}=80-\mathrm{Pa}$.
(They have the biggest concentration of legs)
(They have the smallest concentration of legs)
(Simply re-arranging the equation)

Now the animals are either 2 legged or 4 legged.

Therefore, the total number of legs (Which we know is 260)
$=(\operatorname{Pax} 4)+(\operatorname{Pb} \times 2) \quad$ (As all the PA animals have 4 legs and all the Pb Animals have two legs) and $\mathrm{Pb}=(80-\mathrm{Pa})$
so:-
$4 \mathrm{~Pa}+2(80-\mathrm{Pa})=260$ (See the re-arranged equation above where $\mathrm{Pb}=80-\mathrm{Pa}$ and $260=$ total number of legs)
so
$260=4 \mathrm{~Pa}+2(80-\mathrm{Pa}) \quad$ (as there are 260 legs in total and a bit of re-arranging)
$260=4 \mathrm{~Pa}+160-2 \mathrm{~Pa}$
$260=2 \mathrm{~Pa}+160$
$2 \mathrm{~Pa}=100 \quad(2 \mathrm{~Pa}=260-160)$
$\mathrm{Pa}=50$
So the number of 4 legged animals $=50$
And so the number of Alligators $=50$
And the number of 2 legged animals $=30$
The method used here is simply to substitute animals as each part than mls or gms as in a pharmaceutical calculation.

Calculations - Answers

Chapter 1

1) 30% is 30 gms in 100 mls . 750 mls will therefore contain $30 \times 7.5 \mathrm{gms}$ of Potassium Citrate $=$ 225 gms and will also contain $1 \times 7.5 \mathrm{mls}$ of Quillaia Tincture. Although simple check you gave an answer in Gms and Mls
2) 0.2 mg in $1 \mathrm{ml}=2 \mathrm{mg}$ in $10 \mathrm{mls}=20 \mathrm{mg}$ in 100 ml 20 mg in 100 mls IS NOT 20%
20 mg in $100 \mathrm{mls}=10 \mathrm{mg}$ in $50 \mathrm{mls}=100 \mathrm{mg}$ in $500 \mathrm{mls}=1000 \mathrm{mg}(1 \mathrm{gm})$ in $5,000 \mathrm{mls}$ 1 gm in $5,000 \mathrm{mls}$ now 1 gm in 100 mls is a 1% solution and 1 gm in $5,000 \mathrm{ml}$ is a dilution of that strength by 50 times so the percentage strength must be $1 / 50$ th of 1% or $1 / 50 \%$ or 0.02%
That's a very long way of getting the answer. An alternative way is to convert to gms 0.2 mg in 1 ml is 0.0002 gms in 1 ml Multiply by 100 to convert to percentage $0.0002 \times 100=0.02 \mathrm{gms}$ in $100 \mathrm{mls}=0.02 \%$
the first method although longer allows you to see the relationships more clearly and to have a picture of the actual ratios of the materials involved.
3) The dilution required is from 2% to 0.25%. i.e. 1 in 8 or 1 part to 7 parts of diluent So you will require $200 / 8$ parts of 2% Cream $=25 \mathrm{gms}$ and (200/8) $\times 7$ parts of diluent $=25 \times 7=175 \mathrm{gms}$
4) This is a little more difficult. You need to find the ratio between the two starting solutions and the final solution. This is done by obtaining the difference between the final 'strength' the initial strength thus :-
$50 \% \sim 10 \%=40 \%$ and $5 \% \sim 10 \%=5$. Therefore the ratio of parts to use is to use is $40: 5$ or $8: 1$. This means 8 parts to every 1 part NOT 1 in 8 and this method of calculating the relative proportions is known as alligation.
So to make a 750 mls of a 10% Solution use $750 / 9 \mathrm{mls}$ of 50% and (750×8) / 9 or 83.33 mls of 50% and 666.66 mls of 5%
5) 600 ppm means 600 parts per million or 6 parts in 10,000 or 0.6 parts per $1,000 \mathrm{mls}$. or 0.006 parts per 100 mls or 0.006% (or from above 0.9 parts in 1,500 the total volume) 1 gm of crystals contains 159.7 / 249.7 gms CuSO4. Also the purity is 97.5% so the actual quantity is $(157.9 \times 97.5) /(249.7 \times 100)$ gms in each 1 gm crystals $=0.6235 \mathrm{gms}$.
So each 1 gm contains 0.6235 gms CuSO4. We need 0.9 gms so the quantity of crystals needed will be $0.9 / 0.6235=1.4434 \mathrm{gms}$ or 1.44 gms correct to 2 decimal places.
The full formula is $\mathrm{Q}=(600 / 1,000,000) /((159.7 / 249) *(97.5 / 100))) * 1500$ (I haven't checked the real MW of CuSO4 but it is NOT relevant here. It can be important to know Mws as in at least one exam the MW of Sodium Bicarbonate was misquoted making the calculation impossible with the figures given. However some people who knew the MW were able to identify the error and correctly identify the correct answer from those offered.
6) a) When diluted 1 in 50 produces a 1 in 10,000 solution

So original strength was 1 in $(10,000 / 50)=200$ or 1 in 200
1 in 200 is 0.5 in $100=0.5 \%$
or longhand as a single formula $((1 / 10,000) * 50 * 100) \%$
$=((50 * 100) / 10,000) \%$
b) When diluted 1 in 40 gives a solution containing 15 mg in each 1 ml So original strength was $(15 \times 40) \mathrm{mg}$ in $1 \mathrm{ml}=600 \mathrm{mg}$ in 1 ml $600 \mathrm{mg}=0.6 \mathrm{gms}=0.6 \mathrm{gm}$ in 1 ml and 60 gms in $100 \mathrm{mls}=60 \%$ or as a single formula $(((15 \times 40) / 1000) * 100) \%$
c) Contains 1 part per 10,000 of a drug with a molecular weight of 350 The molecular weight is here to throw you. This is not an uncommon practice in exam questions.
1 part in $10,000=1$ in 10,00 or 0.1 in 1,000 or 0.01 in $100=0.01 \%$
7) The weights or volumes for 300 gms or mls of the following

a)	$12 \% \mathrm{w} / \mathrm{v}$	$=300 / 100 \times 12 \mathrm{gms}$	$=36 \mathrm{gms}$
b)	$.3 .2 \% \mathrm{v} / \mathrm{v}$	$=300 / 100 \times 3.2 \mathrm{mls}$	$=9.6 \mathrm{mls}$
c)	$5.5 \% \mathrm{v} / \mathrm{w}$	$=300 / 100 \times 5.5 \mathrm{mls}$	$=16.5 \mathrm{mls}$
d)	$7.8 \% \mathrm{w} / \mathrm{w}$	$=300 / 100 \times 7.8 \mathrm{gms}$	$=23.4 \mathrm{gms}$

The important element was to get the units correct
8) The quantities required for the following TPN preparation

	Required Ingredient A	Quantity to be used 1.75 gms
Ingredient B	$0.25 \% \mathrm{~m} / 100 \mathrm{mls}$	8.75 gms
Ingredient C	$100 \mathrm{gms} / \mathrm{Litre}$	350 gms
Ingredient D	$1 \mathrm{ppm} \mathrm{w} / \mathrm{v}$	3.5 mg
ingredient E	$3.2 \% \mathrm{v} / \mathrm{v}$	112 mls
ingredient F	60 gm	60 gm
Ingredient G	$700 \mathrm{KCals}(50 \mathrm{kCals} / \mathrm{gm})$	14 gms
Total Volume of TPN		$=3,500 \mathrm{mls}$

D $\quad 1$ in 1 million is $1 \mathrm{mcg} / \mathrm{ml}$ so $(1 \times 3,500) \mathrm{mcg}=3.5 \mathrm{mg}$
G $\quad 700 \mathrm{KCals}=700 / 50 \mathrm{gms}=14 \mathrm{gms}$
The rest should be straightforward
9) Each suppository is to contain 25 micrograms of Methylene Blue.

You are to manufacture 20
Your balance is accurate down to 100 mcg . (0.1 gm)
The suppositories will also contain 50% WSP
The remainder of the Suppositories will be Cocoa Butter.
The suppositories will weigh 5 gms each.
An excess of 5\% is allowed.
The total weight will be ($20 \times 5 \times 105 / 100$) gms $=105 \mathrm{gms}$ i.e. 21 suppositories The quantity of Methylene Blue required is $21 \times 25 \mathrm{mcg}$ in 105 gms This equals 510 mcg
You cannot weigh out less than 100 mcg so you will need to weigh out $1 \times 500 \mathrm{mcg}$ and $1 \times 100 \mathrm{mcg}$
You will require 52.5 gms of WSP (50% of 105 gms)
You require 10 mcg of Methylene Blue (MB) from the 100 mg
If you diluted 100 mg of MB in 40 gms WSP 4 gms would contain 10 mcg
Weigh out 40 gms WSP, dilute the 100 mg MB with this and weigh out 4 gms
Add 48.5 gms WSP and incorporate the remainder of the Methylene Blue (500 mcg)
Make up to a final weight of 105 gms with Cocoa Butter
Use to make 20 x 5 gm suppositories and discard the remainder
There are other solutions and in practice you would may use alternative methods
10) Sodium Bicarbonate gram MW $=84.01$

So $\quad 84.01 \mathrm{gms}$ contain 1 Mole and

$$
\begin{aligned}
& 84.01 / 1000 \mathrm{gms} \text { contain } 1 \mathrm{mmole} \\
= & 0.08401 \mathrm{gms}=84.01 \mathrm{mg} \\
= & 0.42005 \mathrm{gms} \\
= & 0.0042 \mathrm{gms} \text { in } 100 \mathrm{mls} \\
= & 0.042 \% \text { to the nearest milligram }
\end{aligned}
$$

The full equation is $(84.01 / 1000) * 5 *(100 / 1000)$
Alternatively using the formula mmols $/$ Litre $=10,000 * \mathrm{C} / \mathrm{W}$ (See appendix)

$$
\begin{aligned}
& \mathrm{C}=5 \times 84.01 / 10000 \\
& \mathrm{C}=420.04 / 10000 \\
& \mathrm{C}=0.042005 \\
& \mathrm{C}=0.042 \%
\end{aligned}
$$

11) Calculate the weight in milligrams that would be required to make 3 litres of a a 25 mmol / Litre solution of the following given their molecular weights :-

The formula is
Calcium Gluconate Calcium Lactate Magnesium Chloride Magnesium Sulphate Potassium Chloride \quad MW $=74.55$ Sodium Chloride
$M W=448.4$
$\mathrm{MW}=308.3$
$\mathrm{MW}=203.3$
MW $=246.3$
MW - 58.44
$(\mathrm{MW} / 1000) * 25 * 3$
$33,630 \mathrm{mg}$ or 33.63 gms
23122 mg or 23.12 gms
15247 mg or 15.25 gm
18472 mg or 18.47 gms
5591 mg or 5.59 gms
4383 mg or 4.38 gms

Note if the Molecular weight is 50 then
50 gms contains 1 mole 50 mg contains 1 mmol etc
12) Express the answers to Q 11 as a percentage

The formula is
Calcium Gluconate
Calcium Lactate
$M W=448.4$
C $=$ mmols/Litre * W / 10000 (See appendix)
$\%=$ mmols/Litre * MW / 10000

Magnesium Chloride
$\mathrm{MW}=308.3 \quad 0.77 \%$

Magnesium Sulphate
$M W=203.3$
0.77%

Magnesium Sulphate
MW $=246.3$
0.51\%

Potassium Chloride
$M W=74.55$
0.62\%

Sodium Chloride
MW - 58.44
0.19\%

The purpose behind questions 11 and 12 are to show that equivalent Molar solutions are
NOT the same strength (and vice versa).
You could use the weights from Q11 to derive percentages as well e.g. for Sodium Chloride $\%=(4.38 / 3) *(100 / 1000)=0.145=1.5 \%$ to 2 decimal places However each calculation is far longer than the formula given.
13) Sodium Chloride 0.09% MW $=58.44$

Using the same formula as above $0.9 \%=(\mathrm{mmols} /$ Litre $) * 58.44 / 10000$

$$
\begin{aligned}
\text { or } \mathrm{mmols} / \text { Litre } & =(0.9 * 10,000) / 58.44 \\
& =9,000 / 58.44=154
\end{aligned}
$$

as both Sodium and Chloride are monovalent, there are 154 mmols of each (N.B. This strength is normally quoted as $150 \mathrm{mmols} /$ Litre)
14) How many mmols each are there of Sodium and Bicarbonate in 8.4% Sodium

Bicarbonate in a 10 ml minijet. The molecular weight of Sodium Bicarbonate is 84.1
Using the same formula as above $\mathrm{mmol} /$ litre $\quad=(8.4 * 10,000) / 84.1$

$$
=998 \mathrm{mmols} / \text { Litre }
$$

but we require the number in 10 mls

$$
=998 / 100=9.98 \mathrm{mmols}
$$

$$
=10 \mathrm{mmols}
$$

15) The MW of Magnesium Sulphate is 246.3. Magnesium Sulphate Injection is normally supplied as a 50% solution. How many mEq of magnesium per ml does this contain. Normal blood levels of Magnesium (Mg++) are $2.5 \mathrm{mEq} /$ Litre. How many mg of magnesium does this equate to per litre.
part 1) $50 \%=50 \mathrm{gms}$ in 100 mls or 500 gms in 1000 mls
$1 \mathrm{~mol} / 1000 \mathrm{mls}=246.3 \mathrm{gms} / 1000 \mathrm{mls}$
No. of mols/Litre $=500 / 246.3=2.03$
$=2,030 \mathrm{mmols}$ Litre
$=2.03 \mathrm{mmols} / \mathrm{ml}$
However Magnesium is a divalent ion and $\mathrm{mEq}=\mathrm{mmol} x$ Valency

$$
=4.06 \mathrm{mEq}
$$

part 2)

$$
\begin{aligned}
1 \mathrm{mEq}=246.3 / 2 \mathrm{mg} & =123.15 \mathrm{mg} \\
2.5 \mathrm{mEq} & =123.15 \times 2.5 \mathrm{mg} \\
& =307 \mathrm{mg} \text { (approx) }
\end{aligned}
$$

16) The 5 Litre solution contains :-

Potassium	$1.7 \mathrm{mEq} / 100 \mathrm{ml}$	$=17 \mathrm{mmol} /$ Litre
Sodium	$6.3 \mathrm{mEq} / 100 \mathrm{ml}$	$=63 \mathrm{mmol} /$ Litre
Chloride	$15 \mathrm{mEq} / 100 \mathrm{ml}$	$=150 \mathrm{mmol} /$ Litre as all monovalent

$17+63=80 \mathrm{mmols}$ of Chloride will come from KCl and NaCl
therefore 70 mmols will come from Ammonium Chloride $\mathrm{gms} / 100 \mathrm{ml}=(\mathrm{mmols} \times \mathrm{MW}) / 10000))$
so gms $/ 5$ Litres $=($ mmols x MW $) / 10000)) * 5 * 10$

For Sodium Chloride $\quad((63 * 58.44) / 10000) * 5 * 10 \quad=19.31 \mathrm{gms}$ in 5 litres
For Potassium Chloride $((17 * 74.6) / 10000) * 5 * 10 \quad=6.335 \mathrm{gms}$ in 5 litres
For the Chloride $\quad((70 * 53.5) / 10000) * 5 * 10 \quad=18.75 \mathrm{gms}$ in 5 litres
The mEq of Ammonium ions will be 350 equivalents to the excess 'Chloride'
$(70 * 5)$ that cannot be provided by NaCl and KCl
There is almost no need to calculate this.
This is a complicated way of doing this.
In 100 mls , there are
1.7 mEq of Potassium and
6.3 mEq of Sodium

Therefore from these, there will be 8 mEq of Chloride
If the total number of mEq of Chloride are 15 ,
then there are 7 mEq that are provided from the $\mathrm{NH}_{3} \mathrm{Cl}$
So in 100 mls there are 7 mEq of Ammonia
(Ammonium in Ammonium Chloride is monovalent)
So there are 70 mEq in 1 litre
and 350 mEq in 5 Litres
17) 100 suppositories each weighing 2 gms contain Active Ingredient 200mg each and The displacement value of the Active Ingredient is 2.5

Total weight of Suppositories	$=200 \mathrm{gms}$
Total quantity of Active Ingredient	$=200 \times 100=20 \mathrm{gms}$
Total quantity of base	$=200-20 / 2.5$
	$=200-8=192 \mathrm{gms}$

In reality you would probably need to make a slight excess.
18) Approximately how many millimols of Sodium are there in a 500 ml infusion of Sodium Bicarbonate 1.26% (Relative weights of the Ions $\mathrm{Na}=23$ Bicarbonate $=61$)

$$
\begin{aligned}
& \mathrm{Mw}=23+61=84 \\
& 1 \%=1 \mathrm{gm} \text { in } 100 \mathrm{ml} \\
& 1.26 \%=1.26 \mathrm{gm} \text { in } 100 \mathrm{ml} \text { or } 1.26 \times 5=6.30 \mathrm{gms} \text { in } 500 \mathrm{ml} \\
& =6.3 / 84 \text { mols or }(6.3 / 84) * 1000 \mathrm{mmols} \\
& =75 \mathrm{mmols}
\end{aligned}
$$

Section 2 - Quick Questions

19) 450 mls of a $7.5 \% \mathrm{w} / \mathrm{v}$ Solution contains $4.5 \times 7.5 \mathrm{gms}=33.75 \mathrm{gms}$
20) 650 mls of a 1 in $15 \mathrm{w} / \mathrm{v}$ solution contains $650 / 15 \mathrm{gms}=43.34 \mathrm{gms}$
21) 160 mls of a solution containing 250 micrograms in 1 ml is equivalent to
a 40mg Capsule (1 mg in 4 ml)
22) The daily dose of a drug required for a 23 Kg teenager if the recommended dose is $7.5 \mathrm{mg} / \mathrm{kg} / \mathrm{QDS}$ is $690 \mathrm{mg}(23 \times 7.5 \times 4)$
23) 4 gms of Drug A are in 100 mls if, when diluted 1 in 800 there are 50 micrograms per ml in the final solution $(50 \times 800 \mathrm{mcg} / \mathrm{ml})=((50 \times 800 \times 100) / 1000) \mathrm{gm}$
24) Express the following quantities as a percentage of 100 gms

i)	12 gms	$=12 \% \mathrm{w} / \mathrm{w}$
ii)	240 mg	$=0.24 \% \mathrm{w} / \mathrm{w}$
iii)	$750 \mathrm{mic} \cdot \mathrm{c}, \mathrm{grams}$	
iv)	27.5 mls	$=0.00075 \% \mathrm{w} / \mathrm{w}$
v)	0.01 Litres	$=27.5 \% \mathrm{v} / \mathrm{w}$
vi)	$1,000 \mathrm{mg}$	$=10 \% \mathrm{v} / \mathrm{w} \quad(10 \mathrm{mls})$
		$=1 \% \mathrm{w} / \mathrm{w}$

25) What quantity of Chlorhexidine is required to make 350 mls of solution such that when diluted 100 times, the final solution contains 0.004% Chlorhexidine?

$$
(0.004 \times 100) \times 3.5 \mathrm{gms} \quad=1.4 \mathrm{gms}
$$

26) $0.8 \% 40 \mathrm{mg}$ in 5 ml is 80 mg in 10 ml or 800 mg in 100 ml
27) $\quad 37.5 \mathrm{mg}$ are in 25 mls of a 0.15% Solution $0.15 \%=150 \mathrm{mg} / 100 \mathrm{ml}$ or 15 mg in 10 ml or 37.5 mg in 25 ml
28) How many grams of a 1 in 400 ointment contain 2 gms active ingredient?

Answer $=800 \mathrm{gms}$. No calculation example - if you can't do this THEN !!!!
29) How many times must you dilute a 5% solution to give a 1 in 10,000 dilution ?
$5 \%=5$ in 100 so to get 1 in 10000 you need to dilute it $(5 \times 10000) /(100)$ times $=500$ times
Longhand diluting x 100 gives 5 in 10000 but this is 5 times too strong Diluting again by 5 give 1 in 10,000 so the answer is $100 \times 5=500$
30) $8 \mathrm{mls} \quad$ You need $(50 \times 80 \times 4) / 1000 \mathrm{mg}$ for each days dose $=16 \mathrm{mg}$ 16 mg is contained in 8 mls (longhand (16×25)/ 50)

What is the daily dose in mls of a 50 mg in 25 ml injection for a patient weighing 80 Kg if the dose is $50 \mathrm{mcg} / \mathrm{kg} / 6 \mathrm{hrs}$.
31) 225 mls as it is a 1 in 4 dilution
32) $(30 / 10 * 750) \mathrm{mg}=2.25 \mathrm{gm}$
33) 1 in 20

Chloroform Water contains 0.25 ml Chloroform in 100 mls
DS Chloroform Water contains 0.5 ml Chloroform in 100 mls
Concentrated Chloroform Water contains 10 mls Chloroform in 100 mls
34) 0.6 mg is 600 micrograms, 125 micrograms in $2 \mathrm{mls}=600$ micrograms in $(600 \times 2) / 125) \mathrm{mls}$ $=9.6 \mathrm{mls}$
35) The dose of Duffocillin is 150×70 Micrograms $=10.5 \mathrm{mg}$

The strength of Dufocillin injection is 250 mg in 5 ml ,
The volume of the correct dose is therefore $(150 \times 70 \times 5 / 250 \times 1000)=0.21 \mathrm{mls}$
(Check 250 mg in $5 \mathrm{mls}=25 \mathrm{mg}$ in 0.5 mls or 2.5 mg in 0.05 mls
10.5 mg is approximately 4 times 2.5 mg so the approximate volume is $0.05 \mathrm{mls} \times 4=0.2 \mathrm{mls}$)

This low volume may in real life lead you to check or question the recommended dosage ?

Chapter 2

1) 1 in 200,000 is 1 gm in $200,000 \mathrm{ml}$ or 1000 mg in $200,000 \mathrm{ml}$ or 1 mg in 200 ml or 0.1 mg in 20 ml (or 100 micrograms in 20 ml)
2) 1 Litre $=1,000 \times 20$ drops $=20,000.20,000$ divided by $21=952$ minutes $=952$ divided by $60 \mathrm{hrs}=15.87 \mathrm{hrs}=15 \mathrm{hrs} 52$ minutes
3) 0.75 mg is 750 micrograms. Digoxin comes in a presentation of 500 micrograms in 2 ml Ampoules. Therefore 3 mls is required from 2 ampoules. 3 mls can be added to 50 mls NaCl . You can be accurate and use a 53 ml volume or estimate it as a 50 ml volume but the infusion is unlikely to be run through totally.
Using $53 \mathrm{mls}, 53 \mathrm{mls} \times 20=1060$ drops. If these are to be infused over 1 hour, the drop rate is 1020 divided by $60=17$ drops per minute.
The BNF recommends an emergency loading dose of 750-1000 micrograms over 2 or more hours and a volume of 50 mls . Further doses should be administered over two or more hours so this regime does at present appear to be appropriate but the rate of administration could cause problems as it could be too rapid. (see BNF - Nausea and arrythmias)
Lower loading doses are advised where patients have already been exposed to Digoxin so this could explain why a 'lower' end of the dose range is being used here. Glucose 5% would be an alternative solution to use for dilution .
4) The increase represents 24 mm . The current dose the patient is receiving is (150 divided by 48) $\mathrm{mg} / \mathrm{mm}$. The new dose will be $(150 / 48) * 72=225 \mathrm{mg} / 24 \mathrm{hrs}$ NOTE - with syringe pumps it is easy to increase the rate on the dial ; it is more difficult to increase the dose and then try to calculate the rate.
The problem would be that the syringe pump would now be infusing faster and therefore would not last for 24 hours. You cannot calculate how long it will last unless you know when it was started AND then when the rate was changed..
10% means 10% so for 11,000 boxes with a 10% discount you should pay 90 p each i.e $£ 9,900$ not $£ 10,000$. If you pay $£ 10,000$ you are paying $10,000 / 11,000$ p each $=90.9$ p. Over 2 years you would be using $10,000 \times 12 \times 2$ boxes $=240,000$ boxes. If you paid 90.9 p each instead of 90 p, then you would overpay by $£ 2,160$. Last year we used 2,400 boxes of Ranitidine at $£ 8.63$ each. If we had been overcharged by 0.09% this would amount to $£ 180$, a small but significant amount. Our drug bill was $£ 20$ million. A 0.09% overcharge would represent $£ 18,000$ or the salary of 1 member of staff.
Think about this when involved in drug purchasing arrangements.
5) Using the BNF, 2 stone $=12.7 \mathrm{~kg}$ thus dose will be $12.7 \mathrm{~kg} \times 2.4 \mathrm{mg} / \mathrm{kg}=30.48 \mathrm{mg}(30.5 \mathrm{mg})$
6) Recommended total daily dose for Mrs X will be $72 \mathrm{~kg} \times 15 \mathrm{mg} / \mathrm{kg}=1080 \mathrm{mg}$ Mrs X is currently taking 1500 mg which is an overdose. Contact the prescriber and discuss the dose with him.
In the absence of any other information, an appropriate dosage would be TWO 250 mg capsules TWICE daily.

Dose is dopamine is $10.5 \mathrm{mg} / \mathrm{hr}$

Strength of infusion is 200 mg in 50 ml
thus dose in $\mathrm{mls} / \mathrm{hr}=\frac{10.5 \times 50}{200}=2.63 \mathrm{mls} / \mathrm{hr}$
(c) New dose of Dobutamine $=8 \mathrm{mcg} / \mathrm{kg} / \mathrm{min} \times 70 \mathrm{~kg}$

$$
=560 \mathrm{mcg} / \mathrm{min}
$$

$$
=0.56 \mathrm{mg} / \mathrm{min}
$$

$$
\text { in mg/hr } \quad=33.6 \mathrm{mg} / \mathrm{hr}
$$

$$
\text { in } \mathrm{mls} / \mathrm{hr} \quad=\frac{33.6 \times 50}{250}=6.7 \mathrm{mls} / \mathrm{hr}
$$

9) Concentration of infusion $0.5 \mathrm{mg} / \mathrm{ml}$.

$$
\text { Rate in } \mathrm{mls} / \mathrm{min}=\frac{1000}{720}=1.39 \mathrm{mls} / \mathrm{min}
$$

(a) Solution set ($1 \mathrm{ml}=20 \mathrm{drops}$)

Rate in drops $/ \mathrm{min} \quad=1.39 \times 20$

$$
=27.8 \mathrm{drops} / \mathrm{min}
$$

(b) Burette set rate $=1.39 \times 60$

$$
=83.4 \mathrm{drops} / \mathrm{min}
$$

10) Strength of solution is 250 mg in 50 mls

Thus $3.5 \mathrm{mls} / \mathrm{hr}$ is $\frac{3.5 \times 250}{50}=17.5 \mathrm{mg} / \mathrm{hr}$
rate in $\mathrm{mcg} / \mathrm{min}=\frac{17.5 \times 1000}{60}=291.67 \mathrm{mcg} / \mathrm{min}$
Patient weighs 70 kg , thus dose he is on in $\mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ is $291.67=4.16 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ 70
11) Total daily dose for Mr . N is $82 \mathrm{~kg} \times 12 \mathrm{mg} / \mathrm{kg}=984 \mathrm{mg}$ rounding up to 1000 mg dose would be $4 \times 125 \mathrm{mg}$ capsules BD
12) Pump was running for 10 hrs at $2 \mathrm{mls} / \mathrm{hr}$ thus 20 mls has been infused. Hint : Check chart for initial volume and work out total dose the patient has had e.g If initial volume was 50 mls : 50 ml contained 25,000 units

$$
20 \mathrm{ml} \text { contained } \frac{25,000 \times 20}{50}=10,000 \text { units. }
$$

13) Total daily dose would be $7.5 \mathrm{mg} / \mathrm{kg} \times 15 \mathrm{~kg}=112.5 \mathrm{mg}$

250 mg is equivalent to 5 mls
112 mg is equivalent to $\frac{5 \times 112.5}{250}=2.25 \mathrm{ml}$ daily
The label should state 'Give 0.75 mls THREE times daily using the oral syringe provided' Advice to the mother should be to squirt the drug into the side of the baby's mouth. Local policies etc. will be variations of the above.
14) 1 in 10,000 means 1 g in $10,000 \mathrm{ml}$

Thus 2L contains $\underline{2000}=0.2 \mathrm{~g}$ of drug 10,000

Stock solution is $10 \mathrm{~g} / \mathrm{L}$
Therefore 0.2 g is equivalent to $\frac{0.2}{10}=0.02 \mathrm{~L}=20 \mathrm{mls}$
15) A simple question. $3 \times 1.5=4.5 \mathrm{gms}$
16) A lot of waffle here to confuse you. The dosage is $18 x 5 \mathrm{mg}=90 \mathrm{mg}$. 90 mg would be contained in 9 ml of the injection. However you are not asked for this.
17) i) 25 mg . 100 mls contains 0.5 gm 1 ml contains 0.005 gm or 5 mg so 5 ml contains 5×5 or 25 mg
ii) 250 micrograms.

This give you the opportunity to check your calculations.
250 micrograms $=0.25 \mathrm{mg}$
$0.25 \times 20=5 \mathrm{mg}$ (i.e. 5 mg per ml) x $5=25 \mathrm{mg}$ in 5 ml
25 mg in $5 \mathrm{ml}=25 \times 20=500 \mathrm{mg}$ in $100 \mathrm{ml}=0.5 \%$
18) Using the nomogram, the patient's body surface area is 1.99 m . Thus dose will be $25 \times 1.99=49.75 \mathrm{mg}$. I think we would accept $50 \mathrm{mg}!$!
19) $120 \mathrm{mg} \quad 0.02 \%$ is 0.02 gms in 100 ml 0.02 gms equals 20 mg Therefore 600 ml contains $20 \times 6 \mathrm{mg}=120 \mathrm{mg}$
20) D - The batch includes a 5% overage so this is a distractor. The weight you need is $6 / 7$ of $420 \mathrm{Kg}=360 \mathrm{Kg}$
21) C $-8.5 \mathrm{mcg} / \mathrm{ml}$. After each 7 hour period, the concentration should halve. Therefore after 7 hours it will be $34 \mathrm{mcg} / \mathrm{ml}$, 14 hours it will be $17 \mathrm{mcg} / \mathrm{ml}$, 21 hours $8.5 \mathrm{mcg} / \mathrm{ml}$ and after 28 hours $4.25 \mathrm{mcg} / \mathrm{ml}$
22) D - See BNF. You should know Benorilate contains paracetamol. Each tablet is Equivalent to 750 mg Benorilate.
Two tablets equals approximately 1.5 gm Benorilate.
2 gm Benorilate $=970 \mathrm{mg}$ Paracetamol so $1.5 \mathrm{gm}=((970 \times 1.5) / 2)=752 \mathrm{mg}$
This equates approximately to 2 standard paracetamol tablets
The maximum dose of paracetamol is 4 gm daily (8 tablets)
Therefore an additional 6 tablets are possible..
23) C-1gm A 1 in 40 dilution produces 1 in 800 . Therefore the original concentrate is 1200 (8000/40) 1 in 200 means 1 gm in 200ml - SIMPLE !!
24) B - If you dilute 1 in 10 to give a 1in 1000 solution, then your solution must be a 1 in 100 solution. So you have 100 mls of 1 in 100 solution.
To make a 1 in 100 solution from a 20% solution ($20 \%=1$ in 5) you would need to dilute it 20 times.
The answer is therefore B
25) C -39 hours. It would fall to 42 after 13 hours, 21 after 26 hours etc..
26) Please note the amount of product and water in the following preparation:

How much benzalkonium chloride (1:750 solution), will you need to make one litre of a 1:3000 benzalkonium chloride (BAC) solution for use as a wet dressing?

250 ml benzalkonium chloride solution 750 ml water
$(1 \mathrm{~g} \mathrm{BAC} / 3000 \mathrm{ml}) \times(1000 \mathrm{ml})=$ quantity of BAC required $(1 \mathrm{~g} / 750 \mathrm{ml})=$ concentration in available solution so divide quantity by concentration
$(1 \mathrm{~g} \mathrm{BAC} / 3000 \mathrm{ml}) \times(1000 \mathrm{ml}) \times(750 \mathrm{ml} / 1 \mathrm{~g})=250 \mathrm{ml}$ BAS2
1000 ml of $1: 3000$ BAC solution -250 ml BAS2 $=750 \mathrm{ml}$ water
a) Clotrimazole 1% cream $=1 \mathrm{~g}$ clotrimazole/ 100 g total product Each 5 g applicatorful contains 50 mg or 0.05 g 1 g clotrimazole $/ 100 \mathrm{~g}=\mathrm{X} / 5=0.05 \mathrm{~g}$ clotrimazole
b. Albuterol 0.083% solution $=0.083 \mathrm{~g}$ Albuterol/ 100 ml total product Each 3 ml container contains 2.5 mg albuterol ($3 \times 0.83 \mathrm{mg}$) Or $0.083 \mathrm{~g} / 100 \mathrm{ml}=\mathrm{X} / 3 \mathrm{ml}=0.0025 \mathrm{~g}$
c. Timoptol ophth sol $0.25 \%=0.25 \mathrm{~g}$ Timoptol/ 100 ml total product Each 15 ml bottle contains 37.5 mg $0.25 \mathrm{~g} / 100 \mathrm{ml}=\mathrm{X} / 15 \mathrm{ml}=0.0375 \mathrm{~g}=37.5 \mathrm{mg}$ Each drop, assuming 20 drops $/ \mathrm{ml}$ contains 0.125 mg $37.5 \mathrm{mg} / 15 \mathrm{ml} \times 1 \mathrm{ml} / 20$ drops $=0.125 \mathrm{mg} /$ drop

Benzalkonium chloride, used at 0.1% concentration as a preservative, will equal in each drop 0.05 mg $0.1 \mathrm{~g} / 100 \mathrm{ml} \times 1 \mathrm{ml} / 20$ drops $=0.00005 \mathrm{~g} /$ drop $=0.05 \mathrm{mg} /$ drop
d. SSKI is short for "saturated solution of potassium iodide." Potassium Iodide becomes saturated at a concentration of $1 \mathrm{~g} / \mathrm{ml}$. What percent strength is it? 100% $1 \mathrm{~g} / 1 \mathrm{ml}=100 \mathrm{~g} / 100 \mathrm{ml} \quad 100 \mathrm{~g} / \mathrm{ml}=100 \%$ In reality it is just less than 100%
e) Patient dilutes 0.3 ml in one glass (assume 8 oz) of water and drink QID. The Potassium iodide the patient receives each day $=1.2 \mathrm{~g}$ $0.3 \mathrm{ml} /$ dose $\times 1 \mathrm{~g} / \mathrm{ml} \times 4$ doses $/$ day $=1.2 \mathrm{~g} /$ day (The 8oz is irrelevant)
28) Calculate the normal or therapeutic ranges in SI units of the following drugs or electrolytes from the normal or therapeutic ranges given in commonly-used U.S. units
a. Phenytoin (an anti-seizure medication). Therapeutic serum concentration range in $10-20 \mathrm{mg} / \mathrm{L}$. The serum concentration values in units of $\mu \mathrm{Mol} / \mathrm{L}$. Phenytoin MW: 252. Therapeutic Phenytoin SI range: $40-80 \mu \mathrm{Mol} / \mathrm{L}$ $10-20 \mathrm{mg} / \mathrm{L} \times 1 \mathrm{mMol} / 252 \mathrm{mg} \times 1000 \mu \mathrm{Mol} / \mathrm{mMol}=39.7-79.4 \mu \mathrm{Mol} / \mathrm{L}$
b. Theophylline (a medication used in patients with lung disease). Therapeutic serum concentration range $10-20 \mathrm{mg} / \mathrm{L}$. The serum concentration values in units of $\mu \mathrm{Mol} / \mathrm{L}$. Theophylline MW: 180. therapeutic Theophylline SI range: 55-110 $\mu \mathrm{Mol} / \mathrm{L} 10-20 \mathrm{mg} / \mathrm{L} \times 1 \mathrm{mMol} / 180 \mathrm{mg} \times 1000 \mu \mathrm{Mol} / \mathrm{mMol}=55.6-111 \mu \mathrm{Mol} / \mathrm{L}$
c. Chloride. Normal serum concentration range $95-105 \mathrm{mEq} / \mathrm{L}$. The serum concentration values in units of $\mathrm{mMol} / \mathrm{L}$. Chloride MW: 35.5. normal chloride SI range: $95-105 \mathrm{mMol} / \mathrm{L}$ $95-105 \mathrm{mEq} / \mathrm{L} \times 1 \mathrm{mMol} / 35.5 \mathrm{mg} \times(35.5 \mathrm{mg} / 1$ valence $) / \mathrm{mEq}=95-105 \mathrm{mMol} / \mathrm{L}$
d. Carbon dioxide. Normal serum concentration range $22-28 \mathrm{mEq} / \mathrm{L}$. The serum concentration values in units of $\mathrm{mMol} / \mathrm{L}$. $\mathrm{CO} 2 \mathrm{MW}: 44$.
normal CO2 SI range: $22-28 \mathrm{mMol} / \mathrm{L}$
$22-28 \mathrm{mEq} / \mathrm{L} \times 1 \mathrm{mMol} / 44 \mathrm{mg} \times(44 \mathrm{mg} / 1$ valence $0 / \mathrm{mEq}=22-28 \mathrm{mMol} / \mathrm{L}$
29) Your patient requires $(50 \times 95) \mathrm{mg}$ per day $=4750 \mathrm{mg}$ or 4.75 gms
4.75 gm is contained in $(50 / 4) * 4.75 \mathrm{mls}=59.36 \mathrm{mls}$ or 60 mls to the nearest round quantity
If 4 doses are to be given daily they will require $60 / 4 \mathrm{mls} /$ dose $=15 \mathrm{mls}$
30) You are on the ward with a junior doctor and he asks you to calculate the digoxin maintenance dose for a Fred Smith. Fred is 1.75 metres tall and weighs 76 Kg and is 85 yrs old. His serum creatinine is currently 125 micromoles / ml. The doctor wants a serum concentration of $1.5 \mathrm{mcg} / \mathrm{ml}$. Calculate the daily oral dose to the nearest microgram.

You will need the following formulas and values : -
Ideal Body Weight $=(0.9 \mathrm{H}-88)$ for males $\mathrm{H}=\mathrm{Height}$ in cm
Creatinine Clearance $=(1.23(140-$ Age $) \mathrm{x} w \mathrm{t}) /$ Serum Creatinine
Digoxin bioavailability $=0.7$
Digoxin clearance $=(0.8 \mathrm{x} \mathrm{Wt})+\mathrm{CL}_{\mathrm{CR}}$
S = 1
$\mathrm{C}=1.5 \mathrm{mcg} / \mathrm{L}$
$\mathrm{T}=24 \mathrm{hrs}$

Maintenance dose \quad	$=$ Qty drug removed $/(\mathrm{F} \times \mathrm{S})$
	$=(\mathrm{VD} \times \mathrm{C} \times \mathrm{T}) /(\mathrm{F} \times \mathrm{S})$ in time T

Calculate renal function:-

CLCR	$=(1.23(140-\mathrm{age}) \times \mathrm{Wt}) / \mathrm{C}$
	$=(1.23(140-85) \times 76) / 125$
	$=41.13$
	$=(0.8 \times \mathrm{Wt})+\mathrm{CLCR}$
Digoxin clearance \quad	$=(0.8 \mathrm{X} \mathrm{76})+41.13$
	$=101.93 \mathrm{mls} /$ minute or 6.12 litres $/$ hour
Maintenance Dose \quad	$=(\mathrm{VD} \times \mathrm{C} \times \mathrm{T}) /(\mathrm{F} \times \mathrm{S})$
	$=(6.12 \times 1.5 \times 24) /(0.7 \times 1)$
	$=(220.32 / 0.7)$
	$=314.74$ micrograms
	$=1 \times 250 \mathrm{mcg}$ tablet $+1 \times 62.5 \mathrm{mcg}$ tablet
	or $5 \times 62.5 \mathrm{mcg}$ tablets to the nearest whole tablet

You could also calculate the patients ideal body weight although this formula is only used if the patient is considered sufficiently obese:-

$$
\begin{aligned}
& =(0.9 \times 175)-88 \\
& =157.5-88 \\
& =69.5 \mathrm{~kg}
\end{aligned}
$$

31) Freds height is about 160 cm and with a weight of 60 kg that give a body surface area of about $1.65 \mathrm{~m}^{2}$. The correct dose should be $200 \times 1.65=330 \mathrm{mg}$ approx.
32) C You have X gms 10% to which you add Ygms Coal Tar

So $\mathrm{X}+\mathrm{Y}=120 \mathrm{gm}$
Now $1 / 10 \mathrm{X}+\mathrm{Y}=12 \%$ of $120=120 \times 12 / 100=14.4$
Multiplying up $\quad \mathrm{X}+\mathrm{Y}=120 \quad$ and $\mathrm{X}+10 \mathrm{Y}=144$
So $\quad 9 \mathrm{Y}=24$
$\mathrm{Y}=24 / 9=2.667 \mathrm{gms}$
$\mathrm{X}+\mathrm{Y}=120$
$\mathrm{X}=120-3.667=117.333 \mathrm{gms}$
Estimate the amount beforehand. The change is around $2 \% .2 \%$ of 120 gms is $2.4 \times 1.2=2.88$
Note:- a) and b) must be wrong as you are adding around 12% or 7% Coal Tar
e) must be wrong as you are adding less than 2% Coal Tar
33) B - Each powder weighs 200 mg

A 75 mg capsule represents 25 mg Acecor so $75 / 4 \mathrm{mg}$ represents 6.25 mg Acecor itself Therefore each powder will contain (200-75/4) mg Lactose.
You need to supply enough for 30 days $=4 \times 30=120$ (dose is QDS)
So the total weight of Lactose will be :-

$$
\begin{aligned}
(200-75 / 4) \times 120 \mathrm{mg} & =(200-18.75) \times 120 \mathrm{mg} \\
& =181.25 \times 120 \mathrm{mg} \\
& =21,750 \mathrm{mg} \\
& =21.75 \mathrm{gm}
\end{aligned}
$$

A simpler method but one that requires you to be able to estimate relatively accurate is as follows.
$120 \times 200 \mathrm{mg}$ powders $=24 \mathrm{gms}$ total $(120 \times 200 / 1000)$
Note that by doing this calculation you should be able to eliminate answers A and E
As E is too large and A represents over 25% of the total weight
Each 200mg powder contains 18.75 mg Acecor Tablet $=9 \%$ approximately (9.375 accurately)

The total weight is 24 gms and
9% of 20 is 1.8 and 9% of 4 is 3.6 so
9% of 24 is just over 2 approximately (2.16 accurately)
Therefore the weight of lactose is approximately $24 \mathrm{gm}-2 \mathrm{gm}=22 \mathrm{gm}$ minus a little bit more BUT It will be less than 22 rather than more and only just less.
Only answer B is near enough to be correct.
C - The total weight of the tablets will be
(250mg x 1,000,000) / 1000 gms
$=\quad 250 \times 1000 \mathrm{gms}$
$=\quad 250 \mathrm{Kg}$
Methylcellulose will represent 5% of this $=\quad(250 / 100) \times 5 \quad 12.5 \mathrm{Kg}$
However it will be a $25 \% \mathrm{w} / \mathrm{v}$ solution. The volume will be 4 x as great
So the total volume will be $=\quad 12.5 \times 4$ Litres
$=\quad 50$ Litres
(a double check is that 50 Litres is 20% (as volume) of 250 Kg)
34) Heres the long answer :-

Let the Addict take Xmls a day
Then

$$
5,000 / X=14
$$

$$
X=5000 / 14 \quad=357.14 \mathrm{mls}
$$

Let the partner take Ymls a day

$$
\begin{array}{ll}
\text { Now }(5000 / 14) * 10+10 \mathrm{Y} & =5000 \\
\text { Or } 3571.4+10 \mathrm{Y} & =5000 \\
10 \mathrm{Y} & =1428.6 \\
\mathrm{Y} & =142.86 \\
\text { Alternatively } 10 \mathrm{Y} & =(5000 / 14) * 4 \\
\text { So Y } & =(5000 * 4) / 14 * 10 \\
\mathrm{Y} & =357.14 * 4 \quad=142.86
\end{array}
$$

And the number of days this will last for is

> (Volume) / (Volume of Y)

$$
5000 /((5000 * 4) /(14 * 10))
$$

simplifying through what we have calculated about Y
= 5000/ 142.86
= 35 days (34.99999)
Now what is odd about this - Look at the starred formula
That can be simplified (by dividing by 500)) to $\quad=1 /((1 * 4) / 14 * 10))$
This then becomes

$$
=(14 * 10) / 4
$$

$$
=140 / 4=35
$$

In other words you did not need to calculate or know the volume taken by either addict

Here it is done as algebra
Fred consumes xmls over 14 days
Fred and Jane (Just or the sake of argument) consume These are however the same

$$
\begin{array}{ll}
& 14 \mathrm{X}=10 \mathrm{X}+10 \mathrm{Y} \\
& 10 \mathrm{Y}=4 \mathrm{X} \\
& \mathrm{Y}=4 / 10 \mathrm{X} \\
\text { Or } \quad \mathrm{X}=10 / 4 \mathrm{Y}
\end{array}
$$

So if 14 X lasts for 14 days, substituting Y $(10 / 4 \mathrm{Y}) \times 14$ will last for $10 / 4 * 14$ days $=35$

There are other ways. This is a slight variation.

$$
\text { but } \quad \begin{aligned}
& 14 \mathrm{X}=14 \text { days } \\
& \\
& 10 \mathrm{X}+10 \mathrm{Y}=10 \text { days } \\
& \\
& 10 \mathrm{X}+10 \mathrm{Y}=14 \mathrm{X} \\
& \\
& 10 \mathrm{Y}=4 \mathrm{X} \\
& \\
& \mathrm{Y}=(4 / 10) \mathrm{X} \\
& \\
& \mathrm{X}=(10 / 4) \mathrm{Y} \\
& \\
& 14 \times(10 / 4) \mathrm{Y}=14 \mathrm{X} \\
& \\
& \\
& \\
& \\
& \\
& 35 \mathrm{Y}=14 \mathrm{Y}=14 \mathrm{X}
\end{aligned}
$$

(This calculation is taken from a calculation book of Elizabeth $1^{\text {st }}$)

Chapter 3 - ANSWERS

1)

$$
\begin{aligned}
& 13 \mathrm{mg} \text { in } 5 \mathrm{ml}=26 \mathrm{mg} \text { in } 10 \mathrm{ml} \\
&=260 \mathrm{mg} \text { in } 100 \mathrm{ml} \\
&=0.26 \% \text { Morphine Sulphate } \\
&=((285.4 \times 2) / 758.8) \times 0.26) \% \text { Morphine }(\text { Anhyd }) \\
&=0.196 \%
\end{aligned}
$$

This is below 0.2% so the solution is a CD invoice POM
2)

	5mg only	$\mathbf{2 5 m g} \mathbf{+ 5 m g}$	
1st 2 days	$24 \times 5 \mathrm{mg}$	$4 \times 25 \mathrm{mg}$	$4 \times 5 \mathrm{mg}$
2nd 2 days	$20 \times 5 \mathrm{mg}$	$4 \times 25 \mathrm{mg}$	
3rd 2 days	$16 \times 5 \mathrm{mg}$	$2 \times 25 \mathrm{mg}$	$6 \times 5 \mathrm{mg}$
4th 2 days	$12 \times 5 \mathrm{mg}$	$2 \times 25 \mathrm{mg}$	$2 \times 5 \mathrm{mg}$
5th 2 days	$8 \times 5 \mathrm{mg}$		$8 \times 5 \mathrm{mg}$
7 days at 10mg	$14 \times 5 \mathrm{mg}$		$14 \times 5 \mathrm{mg}$
7 days at 5mg	$7 \times 5 \mathrm{mg}$		$7 \times 5 \mathrm{mg}$
TOTALS	$101 \times 5 \mathrm{mg}$	$12 \times 25 \mathrm{mg}$	$41 \times 5 \mathrm{mg}$
Total Dose	$=505 \mathrm{mg}$ total	300 mg	$+205 \mathrm{mg}=505 \mathrm{mg}$

3) Several of the values given seem to be there to obscure the question. The dose is given as Xmg / m ${ }^{2}$
The child has a BSA of $0.6 \mathrm{~m}^{2}$
So the dose is $500 \times 0.6=300 \mathrm{mg}$ tds
This is the dose recommended in the BNF for children aged between 3 months and 12 years
4)

This should be easy 0.3% is 0.3 gm in $100 \mathrm{gm} \quad$| | or 300 mg in 100 gm |
| :--- | :--- |
| | $=150 \mathrm{mg}$ in 50 gm |
| | $=75 \mathrm{mg}$ in 25 gm |
| | $=225 \mathrm{mg}$ in 75 gm |

or $(0.3 / 100) * 75 * 1000 \mathrm{mg}$
5) B - Try it this way. Dobutrex 20 ml contains $12.5 \mathrm{mg} / \mathrm{ml}$ or 250 mg in 20 ml . We add this to 1 Litre and get 250 mg in 1 Litre $(1000 \mathrm{ml})$ or 1 mg in 4 ml . . The dose we need is $5 \mathrm{mcg} / \mathrm{min} / \mathrm{kg}$ or $75 \times 5 \mathrm{mcg} / \mathrm{min}=375$ micrograms per minute. 1 mg in $4 \mathrm{ml}=250 \mathrm{mcg}$ in 1 ml or 125 mcg in 0.5 ml so the answer is 1.5 ml as $250+125=375$. That way does not use long formulas.
An alternative is this.
We are going to dilute the solution from 20 to 1000 or a 1 in 50 dilution. We need 375 micrograms
20 mls contains 250 mg so 2 mls contains 25 mg and 0.2 mls contains 2.5 mg and $0 . .02 \mathrm{mls}$ contains 250 micrograms $(0.25 \mathrm{mg})$. So 0.3 mls contains 375 micrograms. Now the dilution is 1 to 50 so there will be 50 times the volume in the final bag so the volume we will have is $0.03 \mathrm{mls} \times 50=1.5 \mathrm{ml}$ This again avoids using complicated formulas.
To put it all in a mathematical formula the quantity required is :$(5 \times 75) /((250 \times 1000) / 1000)=375 / 250=1.5 \mathrm{mls}$ (dose per Kg times number of kg) divided by ((number of mg converted to micrograms) divided by (final volume) to give micrograms per ml) With all calculations TRY and guess at the rough value of an answer before calculating as usually only one answer will be in the right 'ball park area'. This one is not that typical but to a mathematician only B has the right numbers for a correct answer.

Both methods assume that the final volume is 1000 mls . If you calculate using a final volume of 1020 mls , the answer will be effectively the same. In real life you would ignore the effect of adding just 20 mls to a litre, probably think about adding 20 mls to 500 mls (It would probably depend on potency) and definitly would not ignore the effect of adding 20 mls to 100 mls . Its a question of how significant (i.e. accurate) your dosing system is

1st method :-
$1 \mathrm{~mole}=298 \mathrm{gms}, 1 \mathrm{mmol}=298 \mathrm{mg}, 1 \mathrm{micromol}=298 \mathrm{mcg}$,
1nanomol = 298 nanograms
therefore 4.4nanomoles $/ \mathrm{kg} /$ minute $\quad=298 \times 4.4$ nanograms $/ \mathrm{kg} /$ minute
$=1311.4$ nanograms $/ \mathrm{kg} /$ minute
$=1.3 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

2nd method :-

$1 \mathrm{~mole}=298 \mathrm{gms}, \quad 1 \mathrm{mmol}=298 \mathrm{mg}$
therefore
$(50 \mathrm{mg} / 298 \mathrm{mg})=0.168 \mathrm{mmols}$ in 5 ml injection $=0.168 / 5=0.03356 \mathrm{mmols} / \mathrm{ml}$ = 33,557 nanomols $/ \mathrm{ml}$
1 nanomol $=1,000,000$ millimols (multiply by 1 million)
4.4 nanomols are therefore in $4.4 / 33557 \mathrm{mls}=0.00013 \mathrm{mls}$
Drug concentration is 10 mg in 1 ml or 10,000 micirograms in 11 ml or ($10,000,000$ nanograms in 1 ml)
so 0.0013 mls contains (0.0013 / 1) x 10,000 micrograms $=1,3 \mathrm{micrograms} / \mathrm{kg} / \mathrm{min}$
$1.3 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$
Per day $=($ rate per kg per minute) x weight $\mathrm{x} 60 \times 24$
$=1.3 \times 76 \times 60 \times 24$ micrograms in 24 hrs
$=142,272$ micrograms in 24 hours
$=142 \mathrm{mg}$ in 24 hours
$=14.2 \mathrm{mls}(50 \mathrm{mg}$ in 5 ml$)$
cont.
7) The half life of a drug is the time that it takes for the body concentration to approximately Halve. Values are approximate but complete the following table using the values given.

Drug	Half Life in Hrs	Initial Conc	Time to reach :-	Concentration after
Digoxin	48	$1.5 \mathrm{mcg} / \mathrm{L}$	$0.375 \mathrm{mcg} / \mathrm{l}=96 \mathrm{hrs}$ $(2$ half lives $)$	1 day $=1.125$ $(1 / 2$ of a half life $)$
Theophylline	8	$24 \mathrm{mg} / \mathrm{l}$	$1.5 \mathrm{mg} / \mathrm{l}=32 \mathrm{hrs}$ $(4 \mathrm{half}$ lives $)$	1 day $=6 \mathrm{mg} / \mathrm{L}$ $(3$ half lives $)$
Phenytoin	24	$20 \mathrm{mg} / \mathrm{L}$	$7.5 \mathrm{mg} / \mathrm{l}=36 \mathrm{hrs}$ $(1.5 \mathrm{half}$ lives)	1 day $10 \mathrm{mg} / \mathrm{l}$ $(1 \mathrm{Half}$ life $)$
Carbamazepine	35	$14 \mathrm{mg} / \mathrm{l}$	$7 \mathrm{mg} / \mathrm{l}=35 \mathrm{hrs}$ $(1$ half life $)$	3 days $=$ $5.6 \mathrm{mg} / \mathrm{l} \mathrm{approx}$ $(12 / 3$ half lives approx)
Thyroxine	72	$4 \mathrm{mcg} / \mathrm{L}$	$1 \mathrm{mcg} / \mathrm{L}=144 \mathrm{hrs}$ $(2$ half lives $)$	3 days $=2 \mathrm{mcg} /$ 1 $(1$ half live $)$
Amiodarone	360	$18 \mathrm{mcg} / \mathrm{L}$	$1.25 \mathrm{mcg} / \mathrm{L}=1440 \mathrm{hrs}$ $(4$ half lives $)$ note that this is 60 days	3 days $=15.8$ mcg $/ 1$ approx $(1 / 4$ of a half life approx $)$

The aim of this question is to highlight the variation in half lives amongst common drugs.
8) $21 \quad 1,500 \mathrm{mls}$ contains $1,500 \times 20$ drops
$30,000 /(12 \times 60)=$ drop rate per minute
$=41.6$ or 42
9) $\quad 112.5 \mathrm{Q}=120 \times 1-((100 \times 120) / 1.6 \times 1000)$
(remember to change the quantity of drug to grams
10) This is a simple ratio (with a difference) $A / B=C / D$
10% is 25 gms in 250 gms
20% will be $(25+X) g m s$ in $(250+X)$ gms
X is the amount of coal tar to add and 20/10

SO

$$
\begin{aligned}
& ((25+\mathrm{X}) /(250+\mathrm{X})) /(25 / 250)(\text { i.e. } \mathrm{A} / \mathrm{B}) \quad=20 / 10 \text { (i.e. C/D) } \\
& \text { or } \\
& (25+X) /(250+X) /(1 / 10) \quad=2 \\
& \text { dividing by } 1 / 10 \text { is the same as multiplying by } 10 \text { so } \\
& (25+\mathrm{X}) \times 10 /(250+\mathrm{X}) \quad=2 \\
& \text { or } \\
& 250+10 \mathrm{X} \quad=2 \mathrm{x}(250+\mathrm{X}) \\
& \text { so } \\
& \text { 10X - 2X } \\
& \text { or } \\
& 8 \mathrm{X} \quad=250 \\
& \text { X } \\
& =250 / 8 \\
& =31.2 \mathrm{gms}
\end{aligned}
$$

So 31.2 gms coal tar are added to 250 gns of 10% coal tar
This gives $(25+31.2) \mathrm{gms}$ or 58.2 gms in $(250=31.2) \mathrm{gms}$ or 281.2 gms $58.2 / 281.2 \times 100=19.99 \%$
You can use this formula / process for any strength or quantity and to either increase or Decrease strengths. To decrease strengths, negative values will need to be introduced.
11) Calculate the missing values

Patient Sex	Patient Age	Patient Weight	Serum Creatinine	Creatinine Clearance
F	65	55	280	$\underline{\mathbf{1 5 . 3 2}}$
$\underline{\mathbf{M}}$	60	50	300	16.4
M	57	72	185	$\underline{\mathbf{2 6 . 2 5}}$
F	85	55	350	$\underline{\mathbf{8 . 9 8} \mathbf{~ o r ~}} \mathbf{9}$
M	$\underline{\mathbf{1 5}}$	40	240	175

Example 1 is a straightforward substitution into the formula given
Example 2 requires you to calculate whether the value 1.04 or 1.23 was used in the formula and is a little more tricky than the other examples. It is also unusual in that you would not usually look at using the equation in this way.
Example 3 uses values that do not give nice easy numbers when multiplied out
Example 4 gives a very low value. When you got this value did you double check. In real life you WOULD double check
Example 5 should also make you double check as it is a young adult.
12) In the following table, the approximate equivalence of Diamorphine to Morphine BY POTENCY is given for each route. Fill in the missing equivalent doses. In each case you need to multiply or divide by the potency factor. Providing you thought about this correctly, the answer is easy. For the first example, Diamorphine is 3 times as potent as Morphine, so a does of Morphine 3 times that of Diamorphine would be needed for the same analgesic effect If you did not think, you probably divided rather than multiplied.

Route	equivalence	Diamorphine dose	Morphine dose
I.V.	$3: 1$	30 mg	$\mathbf{9 0 m g}$
I.M.	$2.5: 1$	60 mg	$\mathbf{1 5 0 m g}$
S.C.	2.1	$\mathbf{2 5 m g}$	50 mg
P.R	$2: 1$	30 mg	$\mathbf{6 0 m g}$
P.O.	$1.5: 1$	10 mg	$\mathbf{1 5 m g}$

Similar questions may involve potencies by different routs or form e.g.how many mg of oral morphine would be equivalent to a 100 mg SR tablet.
3 mg Morphine is equivalent to 2 mg SR Morphine
so a dose of 60 mg oral QDS equates to 240 mg Morphine $=160 \mathrm{mg}$ SR Morphine
$=80 \mathrm{mg} 12 \mathrm{hrly}$
13) Dextromoramide is twice as potent as Morphine but is shorter acting and hence needs to be given every three hours. Calculate the dose of Dextromoramide that would be equivalent to 60 mg Morphine Sulphate QDS

Total dose Morphine $=60 \mathrm{mg}$ x $4=240 \mathrm{mg}$
Dextromoramide is twice as potent so
240 mg Morphine $=240 / 2 \mathrm{mg}$ Dextromoramide $=120 \mathrm{mg}$
This needs to be divided into 8 daily doses $=120 / 8=15 \mathrm{mg}$
So 15 mg Dextromoramide are needed every 3 hours $=3 \times 5 \mathrm{mg}$ tabs
Or= $1.5 \times 10 \mathrm{mg}$ tabs
Note :- recommendations on equivalences do vary between sources. These are here purely to assist with your mathematical skills).
The BNF currently gives Morphine 10 mg oral $=3 \mathrm{mg}$ Diamorphine $\mathrm{IM}=1.3 \mathrm{mg}$ Hydromorphone $=$ 5 mg Oxycodone.as a guide. It also provides an Oral / parenteral equivalence chart.

According to the BNF (Pge 12, Ed 43) The approximate dose of a drug for a child patient can be calculated from their Body Surface Area (BSA) in M2 according to the following formula :-
($\mathrm{BSA} / 1.8) \times \mathrm{AD}=$ calculated dose $\mathrm{AD}=$ Adult Dose
This is based on an ideal BDSA of 1.8 for a 70 Kg adult
Fill in the missing values on the following chart
(You may need to refer to the BNF for one or two to calculate the BSA) :-

Body Weight	Age	Calculated BSA	Adult Dose	Calculated does
		1.4	$6 \mathrm{gm} /$ day x 6hrly	$\mathbf{4 . 6 g m} / \mathbf{d a y} \mathbf{~ x ~ 6 h r l y ~}$
		2.1	250 mg	$291 \mathrm{mg}(290 \mathrm{mg})$
		1.7	$\mathbf{1 5 8 . 8 m g}(\mathbf{1 6 0 m g})$	150 mg
		2.7	$\mathbf{1 3 . 3 m g}$ QDS (13mg)	20 mg QDS
	7	$\mathbf{0 . 8 8}$	200 micrograms	$\mathbf{9 7 . 7 m g}(\mathbf{1 0 0 m g})$
23	11	1.25	120 mg TDS	$\mathbf{8 3 . 3 m g}(\mathbf{8 0 m g})$

For the first 4 examples you cannot calculate age or body weight.
Some values have been rounded up to possible practical (starting) doses
For the first 4 examples you cannot calculate age or body weight.
Some values have been rounded up to possible practical (starting) doses

1) 12 mg daily $\mathrm{x} 6 \mathrm{hrly}=3 \mathrm{mgs} 6$ hourly
2) 145.5 mg - this is above the adult dose - is this an obese child or an error
3) The 200 mg would in real life have been a rounding to a nearest possible dose and is in fact probably the adult dose
4) The calculated dose would probably be rounded down to 10 mg or 15 mg if 5 mg strength was available.
5) The BSA value is derived from the BNF data inside the back cover
6) The BNF nomogram shows an ideal 12 year old has a body weight of 39 kg and a surface area of 1.25 . The child here is therefore likely to weigh approximately the same.

The table is also designed to show that real life calculations rarely give nice neat answers. It will be necessary to round up or down such calculated doses to one which will be practical to administer. A 10% variation in a dose is unlikely in most instances to have any significant difference in effect so to round up or down by less than 10% is likely to be safe and acceptable.
15) The standard formula for calculating the rate of administration using a syringe pump is as follows :-
$R=(D \times W \times 60 \times V) /(1000 \times T) \quad$ Where :-
$\mathrm{R}=$ Rate in $\mathrm{mls} / \mathrm{hrD}=$ Dose in $\mathrm{mcg} / \mathrm{Kg} /$ Min
$\mathrm{W}=$ Weight in $\mathrm{KgV}=$ Volume in Syringe in mls $\mathrm{T}=$ Total amount of drug in syringe in mg Fill in the missing values :-

\mathbf{R}	\mathbf{W}	\mathbf{D}	\mathbf{V}	\mathbf{T}
$\mathbf{5 . 2 5 m l s}$	70	25	25	500
3 mls	50	5	25	$\mathbf{1 2 5 m g}$
7.5	$\mathbf{5 0 k g}$	20	50	400
10	63	$\mathbf{6 6 k g}$	50	1250
6	72	12.5	$\mathbf{1 0 0 m l s}$	900

Note in real life you would probably have to calculate a value such as D from a drugs recommendations. Also any real life calculations are unlikely to produce nice round figures. The tendency in examples such as mine and the RPSGB is to give values that do work out nicely. Do not be surprised to undertake real life calculations that give values such as 4.33333333 mls . You will then need to decide on the level of acceptable accuracy.
The above formula is also one of many possible

CHAPTER 4

OPEN BOOK

Section 1 Simple Completion

1)

$$
\begin{aligned}
& \mathbf{B} \text { - The recommended dosage is } \quad=100 \mathrm{mcg} / \mathrm{kg} / \mathrm{qds} \\
& \text { dose required is }=14 \times 100 \mathrm{mcg} \text { qds } \\
& =1.4 \mathrm{mg} \text { qds } \\
& \text { Volume required }=(1.4 \times 5) / 2 \\
& =3.5 \mathrm{mls} \text { qds } \\
& \text { 2) C }-5 \mathrm{mls} \text { contains } 3 \mathrm{mmol} \text { so the patient would be taking }(3 \times 4) \times 4 \mathrm{mmols} / 24 \mathrm{hrs}=48 \\
& \text { 3) } \quad \mathbf{E}=\text { Hydrogen Peroxide } 10 \mathrm{Vol}=3 \% \\
& \text { First convert quantities to percentage } \quad(2.25 \mathrm{gm} \times 100) / 75=3 \% \\
& \text { NB Hydrogen Peroxide } 20 \text { vol is 6\% } \\
& \text { Potassium Permanganante BP }=2 \% \\
& \text { Sterzac }=2 \% \\
& \text { Hibiscrub }=4 \%
\end{aligned}
$$

With this question looking up Hydrogen peroxide deals with 2 answers together. Once you have a correct answer, it is unlikely that any other answer will be 'correct' in RPSGB calculations so unless you have time or doubt your skills do not waste time eliminating all the others.
4) D - First you need to check the Pot. Chlor Conc. Sterile. This does contain 2 mmol in each 1 ml of Potassium so there are 60 mmols in 2.5 litres.
The maximum rate is $5 \mathrm{mmol} /$ hour so the maximum rate

$$
\left.\left.\begin{array}{rl}
& =(2,500 / 60) \times 5 \mathrm{mls} \text { per hour } \\
& =(2,500 / 60) \times(5 / 60) \mathrm{mls} / \text { minute } \\
& =(2,500 / 60) \times(5 / 60) \times 20 \text { drops per minute } \\
& =41.6 \times 0.83 \times 20 \\
& =69 \text { drops } / \text { minute }=207 \mathrm{mls} / \text { hours }
\end{array}\right] \begin{array}{rl}
\text { or } 70 \text { to the nearest } 10 \text { drops }
\end{array}\right\}
$$

Here is a quick way of checking the answer for this question There are 60 mmols in $2,500 \mathrm{mls}$ or 6 mmol in 250 ml
So there will be less than 6 mmol in 210 mls i.e. The answer is around 5 mmols If they receive 70 drops per minute the actual maximum dose will be $70 / 20 \times 60 \mathrm{mls} /$ hour $=210 \mathrm{mls}$. The error is 3 mls or around 1.5%. This is not significant. Here is another way of looking at this question because the answers differ significantly in magnitude :-
Look at the options and remember 20 drops $=1 \mathrm{ml}$ so start low and quickly estimate that :35 drops $/$ minute $=$ less than $2 \mathrm{ml} /$ minute - could be right -D is twice this $=4 \mathrm{ml} / \mathrm{min}$ 210 drops per minute $=10 \mathrm{mls} /$ minute $=600 \mathrm{ml} /$ hour $=$ can't be right and so eliminates $\mathrm{A}, \mathrm{B}, \mathrm{C}$ so only D and E can provide the correct answer. Going back to D , $2 \mathrm{ml} / \mathrm{min}=120 \mathrm{ml} /$ hour $=240 \mathrm{ml}$ in 2 hrs
But 250 mls contains 6 mmol so the answer must be roughly twice this value so must be D Remember this is designed to find the correct ANSWER from a choice and NOT to provide an answer in actual practice
5) D -His volume of distribution is 76×7.5 Litres $=570$ litres you require between (570×1.5) and (570×1.75) micrograms $=855$ to 997.5 mcg but $\mathrm{Ld}=(\mathrm{C} x \mathrm{~V}) / \mathrm{F} \mathrm{F}=$ Bioavailability
Therefore you will need between $(570 \times 1.5) / 0.75 \mathrm{mcg}=1140 \mathrm{mcg}$
= $1140 / 62.5-=18.24$ tablets (19)
(570×1.75) / 0.75 mcg
$=1330 \mathrm{mcg}=1130 / 62.5=21.28$ or 22 tablets
= 19-22 tablets
$\mathrm{LD}=((76 \times 7.5) \times(1.5$ to $1.75 \mathrm{mcg} / \mathrm{L})) / 0.75=20-22$
6) D - 94 gms will be equivalent to $94 / 0.3$ tablets $=$ approx 314 tablets. Each tablet contains 75 mg drug $=314 \times 75 \mathrm{mg}=23,550 \mathrm{mg}=24 \mathrm{gms}$ to the nearest gm .
Alternatively the formula for calculating the answer is (94×75)/300gms
Such calculation requests are rare but do happen, especially when on-call
7) $\quad \mathbf{B}$ - see below

The following contain XXmmols Potassium

.a)	Kay-Cee-L Syrup 5mls	5mmols
.b)	Kloref tablets x 3	20 mmols (approx)
.c)	Slow K tablets x 6	48 mmols (approx)
.d)	Sando-K tablets x 4	48 mmols
.e)	Potassium Chloride Concentrate Sterile x 5 mls	10 mmols

8) $\quad \mathbf{E} \quad$ Think of it this way 2.5% diluted to 1.5% is roughly just under a 1 in 2 dilution

1 in 2 would give a 1.25% dilution
For 150 gms you would need just over half that quantity of 2.5%
i.e. just over 75 gm BUT NOT 75 gm

Only E fits that criteria. That way there is no need to calculate
If you wish to calculate the formula is :-

```
xgm x 2.5% = 150gm x 1.5%
xgm = (1.5%x 150/2.5%)
x = (1.5 x 150)/2.5 = 90
```

9) E There are two ways of calculating this (among many)
10) The strength of Cetrimide is $(0.015 / 20) \%=0.00075 \%$
i.e. $\quad 0.00075 \mathrm{gms}$ in 100 ml

Or $\quad 0.75 \mathrm{mg}$ in 100 ml
or $\quad 0.0075 \mathrm{mg}$ in 1 ml
and $\quad(0.0075 \times 25) \mathrm{mg}$ in $25 \mathrm{ml}=0.1875 \mathrm{mg}$ or 187.5 micrograms
2) 0.015% is 0.015 gm in 100 ml or 15 mg in 100 ml
or $\quad 0.15 \mathrm{mg}$ in 1 ml
so there are 0.0075 mg in 1 ml of Cetrimide if the ratio is $1: 20$
or $\quad(0.0075 \times 25) \mathrm{mg}$ in $25 \mathrm{ml}=0.1875 \mathrm{mg}$ or 187.5 micrograms
There are other maybe simpler ways of doing this. The one problem is that the answer was asked for in milligrams but the correct answer is actually provided as micrograms. This is the way the RPSGB posed this question !!

Section 2 Classification

Section 3 - Multiple Completion

1) C - 2 and 3 only see BNF40 pge 416
2) $\quad \mathbf{A}$ - check BNF These values do change - use current BNF Values

100 mg oral Morphine is equivalent to 30 mg Diamorphine subcutaneously
The BNF States that 10 mg Morphine oral is equivalent to 3 mg Diamorphine IM
Under Diamorphine the BNF states that IM and subcutaneous are equivalent dose wise.
120 mg S/R oral Morphine is equivalent to 10 mg Diamorphine I.M. x 4 hourly x 4 doses i.e. 120 mg Morphine oral $=40 \mathrm{mg}$ Diamorphine IM

500 mg S/R oral Morphine is equivalent to 30 mg oral Diamorphine x 4 hourly
500 mg S/R Morphine oral $=180 \mathrm{mg}$ Diamorphine oral
This requires a little thought.
$1 / 3$ of 500 mg is 166.667 mg - i.e almost 180 mg
The oral and IM doses of Diamorphine are the same (unlike Morphine)
Do check the current BNF as these values (which are really approximate guides) have changed regularly. Earlier versions of this document had different values
3) B - 1 and 2 only. Calculate the dose of Pethidine in each example 1) $=8 \mathrm{mg}$ $2)=15 \mathrm{mg}$ and 3$)=30 \mathrm{mg}$. The BNF recommends 0.5 to $2 \mathrm{mg} / \mathrm{kg}$ or for this child a dose of 7 to 26 mg
4) A-20mls of a 1.25% Injection Solution $1.25 \%=12.5 \mathrm{mg} / \mathrm{ml}=250 \mathrm{mg}$ in 20 ml 0.5 mls of a 10 gm in 20 ml Injection concentrate $=1 \mathrm{~g}$ in $2 \mathrm{ml}=0.5 \mathrm{~g}$ in $1 \mathrm{ml}=0.25 \mathrm{~g}$ in 0.5 ml
1.25 mls per minute over 1 hour of a 3 gm in 900 ml infusion

3 gm in $900 \mathrm{ml}=1 \mathrm{gm}$ in 300 ml
$=250 \mathrm{mg}$ in 75 ml
$1.25 \mathrm{ml} / \mathrm{min}=1.25 \times 60 \mathrm{mls} / \mathrm{hr}=75 \mathrm{mls} / \mathrm{hr}$

Section 4 - Assertion / Reason

1) A - Both statements are true and the second is an explanation of the first (If you look carefully at this question only answers A or E could apply)
2) A - Assume it's correct that Granicidin for a 50 Kg patient should be infused at a rate of 240 mg per hour and answer with regard to the correctness of the following statements

First Statement :- $\quad 0.2 \%$ of Granicidin in a 500 ml infusion bag should be infused at a rate of 60 mls per 30 minutes

Second Statement :- \quad This represents an infusion rate of $80 \mathrm{mcg} / \mathrm{Kg} / \mathrm{Min}$
It is doubtful you will get one this tricky in the exam
$240 \mathrm{mg} /$ hour $=4 \mathrm{mg} /$ minute $\quad 240 / 60$
$=4 / 50 \mathrm{mg}$ minute $=0.8 \mathrm{mg} / \mathrm{kg}$
$=800 \mathrm{mcg} / \mathrm{kg} /$ minute. The dose is therefore $800 \mathrm{mcg} / \mathrm{kg} / \mathrm{min} /$
Statement 2 is therefore correct.
0.2% represents 2 mg in $1 \mathrm{ml} \quad(1 \%$ is $10 \mathrm{mg} / \mathrm{ml}$)
$60 \mathrm{mls}=60 \times 2=120 \mathrm{mg}$
120 mg in 30 minutes $=240 \mathrm{mg}$ in 1 hour $=4 \mathrm{mg} /$ minute
Statement 1 is also correct
Statement 1 and 2 are complimentary so the correct answer is A
3) $\quad \mathbf{B}-\quad 1 \mathrm{ml}$ is $(1 / 12.5) \times 100 \%$ of $12.5 \mathrm{mls}=100 / 12.5=8$

An easier way to calculate is to multiply up $12.5 \times 8=100$

1 ml contains 2 mg because 12.5 mg contains 25 mg
However the Statement 2 is not dependant on Statement 1 Some argue for A because 2 mg is 8% of 25 mg

CLOSED BOOK

Section 1 Simple Completion

1) D - 24 mls This is essentially the same question as open book 1 but with the Dosage/kg given. Have a look and see.
The dose is 150 mcg 6 hrly or 600 mcg daily $/ \mathrm{kg}=600 \times 16 \mathrm{mcg}=9.6 \mathrm{mg}$ 9.6 mg is contained in $(9.6 \times 5) / 2 \mathrm{mls}=24 \mathrm{mls}$ (as bag wil run over 24 hrs) What you could also be asked is the infusion rate
This equals $500 / 24 \mathrm{mls} /$ hour or $(500 /(24 \times 60)) \mathrm{mls} / \mathrm{minute}=0.347 \mathrm{mls} / \mathrm{min}$ Note :- This assumes that 24 mls have been removed from the IV bag.
You could use a volume of 524 ml and this gives $524 /(24 \times 60)=0.36 \mathrm{mls} \mathrm{min}$
2) $\quad \mathbf{C}$ - In Detail, each day the patient will use $(250 \times 4) / 20 \mathrm{mls}$

$$
\begin{aligned}
& =50 \mathrm{mls} \text { concentrate } \\
& =50 \times 28 \mathrm{mls} \text { total supply } \\
& =1,400 \mathrm{mls}
\end{aligned}
$$

Since the solution is 1 in $800,1,400 \mathrm{mls}$ contains $1,400 / 800=1.75 \mathrm{~g}$
3) C-3.75mls. If you look at this it is simple.

You require 0.125 mls in each 10 mls of final solution
Therefore in 300 mls you require $(0.125 \times 300) / 10$

$$
=37.5 / 10=3.75
$$

4) D-3.25gms - 1 in $200,000 \times 100$ (The dilution) $=1$ in 2,000

$$
=3.25 \text { in } 6,500
$$

5) A - 980mls (Conc Soln A x Vol Soln A = Conc Soln B x Vol Soln B) $=(4.25 \times 1.5) / 6.5=$ Vol Soln B $=(6.375 / 6.5)=0.98$
Now dividing 6.375 by 6.5 is not easy in your head. But if you have any idea of the answer, it can only be less than one. Since you are working in litres, the answer is less than one litre. Only Answer A meets that criterium.
6) D-10.8gms (60/5) x (900/1000) gms or $(60 \times 20 \times 9) / 1000 \mathrm{gms}$ $(\mathrm{Mg} / \mathrm{ml} \times$ volume $) / 1000(\mathrm{mg} /$ dose x doses $) / 1000 \mathrm{gms}$
7) E - You should instantly eliminate A and C as they are w / v. The final volume is irrelevant.
The concentration is 0.5 ml in 5 ml or 5 ml in 50 ml or 10 ml in $100 \mathrm{ml}=10 \%$ V/V
8) $\quad \mathbf{A}$ - The dose required is $65 \times 4 \mathrm{mcg} / \mathrm{min}$
$=65 \times 4 \times 60 \mathrm{mcg} /$ hour
$=15,600 \mathrm{mcg}$ or 15.6 mg
In this question you cannot ignore the original dopamine volume so 250 mg
Dopamine is contained in $50+20 \mathrm{mls}$ or 70 mls .
So if 70 mls contains 250 mls
1 mg is contained in $70 / 250 \mathrm{mls}$
And 15.6 mg are contained in (15.6×70) / 250 mls
$=4.36 \mathrm{mls}$
$=4.4 \mathrm{mls}$ approx
9) $\quad \mathbf{E}-7.5 \times 16.5=123.5 \mathrm{mg}$ dose $123.5 / 1.25=98.5 \mathrm{mls}=$ approx 100 mls In real life values rarely work out to exact amounts and it should be possible to appreciate that 1.5 mls is within the tolerance for dose accuracy. When administering 100 ml from 2 x 50 vials, normal human error is around 2-5\% On the wards. In a lab it reduces to around $0.5-1 \%$ or less.
The RPSGB exam questions have sometimes used rounded values but are more commonly designed to actually produce 'rounded values' in the first place
10) $\quad \mathbf{B}-25.5$ hours. The concentration will halve every 8.5 hours so will be 54 after 8.5 hours, 27 after 17 hours and 13.8 after 25.5.hours
11) C -50.4 mls . First calculate your dose this is $63 \times 2 \mathrm{mg}=126 \mathrm{mg}$ 200 mg in $20 \mathrm{ml}=126 \mathrm{mg}$ in 12.6 ml The dose $2 \mathrm{mg} / \mathrm{ml}$ so the final volume will be $126 / 2 \mathrm{mls}=63 \mathrm{mls}$ 12.6 mls is added to X mls Sodium Chloride to make 63 mls so.... $63-12.6=50.4 \mathrm{mls}$
12) E longhand this becomes :-
$75 \mathrm{mg}=15$ tablets daily for 7 days $=\quad 105$ then
$65 \mathrm{mg}=13$ tablets daily for 7 days $=\quad 91$ then
$55 \mathrm{mg} \quad 77$
$45 \mathrm{mg} \quad 63$
$35 \mathrm{mg} \quad 49$
$25 \mathrm{mg} \quad 35$
$15 \mathrm{mg} \quad 21$
5 mg for 14 days 14
Total $=\quad 455$ tablets
Or $\quad(15+13+11+9+7+5+3) * 7=14$
$=(63 * 7)+14=\quad 455$ tablets
13) $\quad \mathbf{B}-\quad$ The daily dose for the baby girl is $180 \times 6=1080 \mathrm{mg}$ This means a dose of 270 mg four times a day If 2 ml contains 600 mg then 270 mg is contained in $(2 \times 270) / 600$ $=0.9 \mathrm{mls}$
14) D - This is easy. The obvious but wrong answer is 1 ml . What you need is how much Phenol 95% contains 1 ml of Phenol. This is $1 / 0.95=1.05$
15) C-20mls.

Your solution will be 1 in (1000/40) $\quad=1$ in 25
The solution you have is $50 \% \quad=1$ in 2
Therefore the dilution will be a 1 in $(25 / 2)$ or 12.5 dilution
You need 250 mls . 1 in 12.5 is 20 in 250 so you need 20 mls
16) A - $\quad 100 \mathrm{mls}$ contains 1.2 gms salt. Therefore 1 ml contains 12 mg salt 15 mls contains 180 mg of salt. The quantity of Iron represented by 180 mg salt is $(180 \times(56 / 278)=36 \mathrm{mg}$
17) D This is a simple question but the table of values often throws people. A simple approach is the combine ingredients as these represent 2.5\% 2.5% is 3.75 gm in 150 gm or $3.75 \mathrm{gm}+146.25 \mathrm{gm}$ diluent only D has this value.
An alternative to confuse often gives a set of correct numerical values but gets the units wrong i.e. w/w instead of w/v etc.
18) $\quad \mathrm{C} \quad$ This is a genuine question from a RPSGB sample paper !! The trick is to avoid/ cut out the lengthy waffle and just calculate.
$\mathrm{CC}=(1.2(140-60) \mathrm{x} 50) / 300=16$
therefore the dosage should be
$2.5 \mathrm{mg} / \mathrm{L} \mathrm{kg} \times 24 \mathrm{hrs}=2.5 \times 50=125 \mathrm{mg}$
If you get to a $S C$ of 16 , this gives only options C and E as being correct As the dose is above minimal, then C would be logical as a choice if you get stuck on the rest of the calculation
(The value of $\mathbf{1 . 2}$ is normally given as $\mathbf{1 . 2 3}$ for males and $\mathbf{1 . 0 4}$ for females)
19) D 156 gms - This is a simple calculation.

The RMM or GMW $=$ Weight $/ \mathrm{MMOLS}=109.2 / 0.7$

D Look at the formula. Only LLP is in MLs. This eliminates A, B, C, E There is no need to calculate

Ingredient	A	B	C	D	E
Screenistat	14 gm	28 gm	28 gm	14 gm	28 gm
Beeswax	140 gm				
WS Paraffin	210 gm				
LL Paraffin	175 gm	175 gm	175 ml	175 ml	175 gm
Cetosteryl Alc.	231 gm	231 ml	231 ml	231 gm	231 gm

21) D You require $50 \times 100 \mathrm{mg}$ Theophylline $=5 \mathrm{gms}$

The displacement value is 0.5 so 5 gms will displace $5 / 0.5 \mathrm{gms}$ base Or 10 gms
Therefore you will need (50x1gm) - 10gm base
$=40 \mathrm{gms}$
22) B $\quad 1$ in 10,000 is 1 gm in 10,000 or $1,000 \mathrm{mg}$ in $10,000 \mathrm{mls}$

Or 1 mg in 10 mls or 0.2 mg in 2 mls or 200 micrograms in 2 mls
1 micromol is equivalent to 50 mcg
200 micrograms is therefore (200/50) micromols
$=4$ micromols
If you look clearly only 3 'digits' are involved 1, 2 and 5
3 would be difficult to produce as answer by division or multiplication so is easily eliminated
23) C Check this in current BNF as again recommendation change.

In the current BNF (42) the recommendations on Pge 310 is a dose of 150 mg daily for a child between $8-12$. Page 309 recommends that prophylaxis should start 1 week before travel and continue for 4 weeks after returning. That gives 7 weeks treatment at 150 mg a day or
$49 \times 150 \mathrm{mg}$ Or 49×1.5 tablets $=74$ to the nearest whole tablet Malaria prophylaxis in some form is a regular exam topic
25) A 4 mls per minute $=240 \mathrm{mls}$ per hour (4×60)

1 in 10,000 is 1 gm in $10,000 \mathrm{mls}$
or $\quad 0.1 \mathrm{gm}(100 \mathrm{mg})$ in 1000 mls
or $\quad 0.01 \mathrm{gm}(10 \mathrm{mg})$ in 100 mls
or $\quad 0.02 \mathrm{gm}(24 \mathrm{mg})$ in $240 \mathrm{mls}(100 \times 2.4)$
or $((4 \times 60) / 10,000) \mathrm{gms}$
or $((4 \times 60) / 10,000) * 1000 \mathrm{mg}$
24) A 4 mls per minute $=4 \times 60$ or 240 mls per hour

NOW if the solution is a 1 in 1xxxxxxxx solution, the answer MUST
Contain the digits 24 - no further calculation is necessary
However the final bit is 1 in $10,000=(1 / 10,000) \times 240 \mathrm{gms}$
$=0.024 \mathrm{gms}=(0.024 \times 1000) \mathrm{mg}=24$
26) $\quad \mathbf{E} \quad 12.5 \mathrm{mls}$. The daily dose is $(5 \times 15) \mathrm{mg}=75 \mathrm{mg}$

75 mg is contained in $75 / 6 \mathrm{mls}=12.5 \mathrm{mls}$
A dose will therefore be half that amount $=6.25 \mathrm{mls}$ given twice daily
27) D Here is the method I have used for this :-
1.9 gms represents 95% of the final mass.

So $1.9 / 95 \times 5=5 \%$ of the final mass

$$
\begin{aligned}
& =0.02 \times 5 \\
& =0.1 \mathrm{gm} \\
& =100 \mathrm{mg} \\
& =1,900 \mathrm{mg} \\
& =20 \times 5 \\
& =100 \mathrm{mg}
\end{aligned}
$$

Alternatively $1.9 \mathrm{gms} \quad=1,900 \mathrm{mg}$
so $1,900 / 95 \times 5$
Now 100 mg is 100,000 micrograms
so the time taken will be $=100,000 / 20$ seconds

$$
=100,000 / 20 \times 60
$$

$$
=1,000 / 12
$$

$$
=83.33333 \text { minutes }
$$

$$
=83 \text { minutes approx }
$$

Here is a second method :-
Look at the question again
1.9 gms is $2 \times 0.95 \mathrm{gms}$

So if 1.9 gms is 95%, then 0.1 gms ($2 \times 50 \mathrm{mg}$ or 100 mg) is 5%
20 mg is $1000 \times 20 \mathrm{mcg}$
if 20 mcg takes 1 second then 20 mg will take 1000 seconds
and 100 mg will take 5,000 seconds ($1,0000 \times 5$)
or 5000 / 60 minutes in minutes (60 seconds to a minute)
$=83.333$ minutes
28) B 2 drops every 6 hours in both eyes $x 50 \%=8$ drops

20 drops $=1 \mathrm{ml}$
8 drops $=8 / 20^{\text {th }}$ of 1 ml
$0.5 \%=500 \mathrm{mg}$ in 100 ml
$=5 \mathrm{mg}$ in 1 ml
$=5 \times 8 / 20 \mathrm{mg}$ in 8 drops
$=2 \mathrm{mg}$
Note that this is a significant doe of Timoptol and explains why the long acting Gel formulation was introduced.
B $\quad 1$ in 1800 is 1 gm in 1800 . - so it can't be 10 can it.
You will need to calculate the others but both are approximately correct.
30) B $2.5 \mathrm{mmols} /$ hour means 2.5×24 mmols in 24 hours $=60 \mathrm{mmols}$ in 24 hours. I.e. the infusion must run for 48 hours.

Alternatively the rate is $120 / 2.5$ hours $=48$.
2.41 litres over 24 hours $=2,400 / 24 \mathrm{mls}$ per hour
$=100 \mathrm{mls} /$ hour
$=100 / 60 \mathrm{mls}$ per minute
$=1.67 \mathrm{mls}$ per minute
$=1.67 \times 20$ drops per minute
$=34$ approximately
This calculation needs you to have the ability to gesstimate some values.

Section 2 Classification

1) $\quad \mathbf{C}-0.25 \%$ of $7.5 \mathrm{gms}=(7.5 \times 1000) /(100 * 4) \mathrm{mg}$ (note $7.5 / 4$ is the only real Calculation involving values other than 10 s etc..)
2) D $-(2.5 / 500) * 250 * 5$
3) $\quad \mathbf{B}-1 \mathrm{mmol}=60 \mathrm{mg}, 1 / 2 \mathrm{mmol}=500$ micromols.

These are simple calculations. The 'odd' values are designed to make them appear More difficult than they are.
4) B-150 is the approximate number of millimoles per litre of Sodium in serum values vary between 140-155 depending on hospital
5) $\quad \mathbf{A}-1000$ is the number of millimoles in one mole
6) C-Calcium is divalent so 100 mmols of Calcium equal 200 mEq Calcium
7) C 100 is the approximate number of millimoles of Chloride in Serum. See Q4 if you Hospital quotes somewhere between 95-105
8) $\quad \mathbf{C}-100$ is the approximate number of millimoles of Sodium excreted normally in any 24 hour period
9) $\mathrm{A}-1000$ is the number of millimoles per litre Bicarbonate in a 100 mEq
per 100 ml solution of Sodium Bicarbonate. Bicarbonate is monovalent

Section 3 Multiple Completion

1) B-1 Litre would now contain 1 Mole and 1 Mole also equals the molecular weight in grams - this is also termed the Relative Molecular Mass
2) B - This looks a tricky calculation. However it is simple

Look at statements 1 and $2 \quad 1.7 \%$ and 0.05%.
Multiply 0.5% by $30=1.5 \%$
so statements 1 and 2 are essentially a match for a 30 x dilution.
Therefore if 1 is correct, so must be 2
Statement 3 is obviously incorrect 1 in 1,800 is 1 gm in 1,800 not 10
Therefore B is the only possible answer as no other options apply
If you must calculate form the values provided :-
The mother solution is 1 in $60(1 / 1800) \times 30)$
1 in $60=1 \mathrm{gm}$ in 60 mls and 0.33 in 20 mls
so this equals 1.66 gms in $100 \mathrm{mls}=1.66 \%$ so statement 1 is correct
1 in $1800=0.05 \%$ (I leave you to calculate this)
also $1.66 / 30=0.05$ (approx)

An exercise with Benorilate - Answer

$1 \mathrm{gm}=485 \mathrm{mg}$ Paracetamol	
1 mg Paracetamol	$=1000 / 485 \mathrm{mg}$ benorilate
4,000mg Paracetamol	$=(1000 \times 4000) / 485 \mathrm{mg}$ Benorilate
	$=8.25 \mathrm{gms}$ benorilate
	Now there are 2 gm of Benorilate in every 5 ml of suspension so
8.25 gms benorilate	$=(8.25 \times 5) / 2 \mathrm{mls}$ Benorilate Suspension
	$=20.6 \mathrm{mls}$ Benorilate Suspension
	$=8250 / 750$ tablets
	(converting to milligrams and there are 750 mg benorilate per tablet)
	$=11$ tablets for a maximum Paracetamol dose
$1 \mathrm{gm}=525 \mathrm{mg}$ Aspirin	
1 mg Aspirin	$=1000 / 525 \mathrm{mg}$ benorilate
4,000mg Paracetamol	$=(1000 \times 4000) / 525 \mathrm{mg}$ Benorilate
	$=7.62 \mathrm{gms}$ benorilate
	Now there are 2 gm of Benorilate in every 5 ml of suspension so
7.62 gms benorilate	$=(7.62 \times 5) / 2 \mathrm{mls}$ Benorilate Suspension
	$=19 \mathrm{mls}$ Benorilate Suspension
	$=7620 / 750$ tablets
	(converting to milligrams and there are 750 mg benorilate per tablet) $=10$ tablets for a maximum Aspirin dose

The maximum recommended dose of Benorilate is 6 gms for the elderly so :-
6 gms Benorilate is equal to
$485 \times 6 \mathrm{gms}$ Paracetamol $=2.91 \mathrm{gms}$ Paracetamol
$0.525 \times 6 \mathrm{gms}$ Aspirin $\quad=3.15 \mathrm{gms}$ Aspirin

An Exercise with Potassium Chloride - Answers

1) 44 divided by $2.2 .=20 \mathrm{~kg}-$ this is a simple calculation
2) The dose is 0.5 mEq per Kg so the answer is $20 \times 0.5=10 \mathrm{mEq}$
3) Potassium is monovalent. Therefore 1 mmol KCl contains 1 Meq Potassium
4) $3 \times 10=30 \mathrm{Meq}$
5) KCL Concentrate contains 2 mmol (Meq) Potassium in each 1 ml Therefore you would add $10 / 2=$ 5 mls
6) Using the concentrate does not significantly affect the volume and therefore the calculation of flow rates. Thorough mixing would be essential.
7) Yes / No max daily dose is $1.5 \times 20=30 \mathrm{mEq} / 24$ hours

10 mmols over 4 hours MAY be excessive as such a rate would equate to $60 \mathrm{mmols} /$ day - twice the maximum recommended. In a reasonably healthy child, this is unlikely to be a problem. In a severely ill child, a slower rate of infusion may be appropriate.
8) 250 mls over 4 hours

$$
\begin{aligned}
& =250 / 4 \times 60 \mathrm{mls} / \text { minute } \\
& =250 / 240 \quad=1 \text { and } 10 / 240 \text { remainder }=1 / 24 \\
& \quad \text { now } 1 / 2=0.5 \text { so } 1 / 20=0.05 \text { so } 1 / 24 \text { is just under } 0.05 \\
& =1.05 \mathrm{mls} / \text { minute }(\text { Actually } 1.0466666666666 \text {) } \\
& \begin{aligned}
1 \text { drop } \quad & =1 / 20 \mathrm{ml} \\
& =0.05 \mathrm{mls}!!!!
\end{aligned}
\end{aligned}
$$

so the drop rate is 21 drops / minute actually the drop rate would be set to 20 drops / minute
9 the error rate is 1 drop per minute
$1 \mathrm{drop} /$ minute $=60 \mathrm{drops} /$ hour $=3 \mathrm{mls}$
over 4 hours you would give 250 mls (approximately)
or $250-(3 \times 4) \mathrm{mls}$ accurately
$=238 \mathrm{mls}$
so $238=238 / 250 \times 100 \%=\%$ of required dose given $\quad=95.2 \%=95 \%$
or $12 / 250 \times 100=$ error or $\%$ of required dose not given $\quad=4.8 \%=5 \%$
However You would be giving 20 drops instead of 21
This represents an error of (approximately 1 in $20=5$ in $100=5 \%$)
This is probably an acceptable error - why ??????
10 The maximum daily dose is 25% of that recommended
that is $30 \mathrm{mg} / 4 \mathrm{Eq}=7.5 \mathrm{mEq}$
You are giving 10 mEq
This would then need to be given at a rate of
7.5 mEq over 24 hours $=2.5 \mathrm{mEq}$ every 8 hours and so the final 2.5 mEq would be given over 8hours so the total time would be 32 hours

So the flow rate would be $250 / 32 \times 60 \mathrm{mls} /$ minute
$=250 / 1920=$ approximately $250 / 1800$
=25/192
$=($ approx $) 4 / 30=0.1333$ (actual value of $25 / 192$ is 0.1302)
$=0.15$ to the nearest whole number
i.e. a bit of averaging doesn't affect the number of drops in that
0.1302 and 0.333 still produce 0.15 or 3 as the nearest drop rate $=3$ drops
because 1 drop $=0.05 \mathrm{mls}$
3 drops $/$ minute $=(3 \times 60 \times 32) / 20$ mls over 30 hours
$=(3 \times 3 \times 32)=9 \times 32=288 \mathrm{mls}$ over 32 hours
error rate $=288 / 250 \times 100 \%$
$=115 \%=11.5 \%$ excess

This error rate is again probably acceptable - why - because it is borderline.
If you used 2 drops per minute the rate would be
$(2 \times 60 \times 32) / 20 \mathrm{mls}$ over 32 hours
$=2 \times 3 \times 32=192 \mathrm{mls}$ per hour
Error rate $=192 / 250 \times 100 \%=76.8 \%$

$$
=23.2 \% \text { too little }
$$

If the drip were taken down after 32 hours, 2 drops / hour would represent a significant underdosage. Therefore 3 drops / hour is the better rate. As the whole dose will be administered perhaps a little quickly whereas with 2 drops / hour the bag will be taken down before the full dose is given.
11) You will be adding 5 mls of KCl concentrate The concentrate is 15% solution It contains $\quad 15 \mathrm{gms}$ in 100 mls

$$
=1.5 \mathrm{gms} \text { in } 10 \mathrm{mls}
$$

$=0.15 \mathrm{gms}$ in 1 ml
$=0.75 \mathrm{gms}$ in $5 \mathrm{mls}(0.15 \times 5)$
you will be diluting this to 250 ml
$=0.75 \mathrm{gms}$ in 250 mls (255 to be accurate)
$=1 \mathrm{gm}$ in $250 \mathrm{x}(4 / 3)=1000 / 3$
$=1 \mathrm{gm}$ in 333.33333 mls
$=1 \mathrm{gm}$ in 333 mls or a 1 in 333 solution
$=1 / 333 \times 1000$ in 1000
$=3.003$ in 1000
$=3$ in 1000
(to two significant figures - why have I only introduced this now)
1 gm in 333 expressed as a percentage
1 gm in 333
$=1 / 333$ in 1
$=1 / 333 \times 100 \%$
now $1 / 3=33 \%$
so $1 / 30=3 \%$
and $1 / 300=0.3 \%$
so the answer is going to be just over 0.3% (actually 0.3003003)
but 0.3% would be an acceptable answer.
Note that in all the above, there is very little need to actually calculate anything difficult. Any anser given in the RPSGB exam for such questions would be unambiguous enough for you to easily identify it. (I.e for Q12 you will get a choice of percentages but only one would be around 0.3%.

The reason for rounding to two significant figures is that no value given in the question has more than two significant figures)

It is inevitable that there will be errors in this kind of booklet.
It would be appreciated if all errors or areas that are confusing are detailed to :-

Roy Sinclair

e-mail the info to :-

